{"title":"T-ESKF:一致视觉惯性导航的变换误差状态卡尔曼滤波","authors":"Chungeng Tian;Ning Hao;Fenghua He","doi":"10.1109/LRA.2024.3524905","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to address the inconsistency problem caused by observability mismatch in visual-inertial navigation systems (VINS). The key idea involves applying a linear time-varying transformation to the error-state within the Error-State Kalman Filter (ESKF). This transformation ensures that the unobservable subspace of the transformed error-state system becomes independent of the state, thereby preserving the correct observability of the transformed system against variations in linearization points. We introduce the Transformed ESKF (T-ESKF), a consistent VINS estimator that performs state estimation using the transformed error-state system. Furthermore, we develop an efficient propagation technique to accelerate the covariance propagation based on the transformation relationship between the transition and accumulated matrices of T-ESKF and ESKF. We validate the proposed method through extensive simulations and experiments, demonstrating better (or competitive at least) performance compared to state-of-the-art methods.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1808-1815"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"T-ESKF: Transformed Error-State Kalman Filter for Consistent Visual-Inertial Navigation\",\"authors\":\"Chungeng Tian;Ning Hao;Fenghua He\",\"doi\":\"10.1109/LRA.2024.3524905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach to address the inconsistency problem caused by observability mismatch in visual-inertial navigation systems (VINS). The key idea involves applying a linear time-varying transformation to the error-state within the Error-State Kalman Filter (ESKF). This transformation ensures that the unobservable subspace of the transformed error-state system becomes independent of the state, thereby preserving the correct observability of the transformed system against variations in linearization points. We introduce the Transformed ESKF (T-ESKF), a consistent VINS estimator that performs state estimation using the transformed error-state system. Furthermore, we develop an efficient propagation technique to accelerate the covariance propagation based on the transformation relationship between the transition and accumulated matrices of T-ESKF and ESKF. We validate the proposed method through extensive simulations and experiments, demonstrating better (or competitive at least) performance compared to state-of-the-art methods.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 2\",\"pages\":\"1808-1815\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10819644/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819644/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
T-ESKF: Transformed Error-State Kalman Filter for Consistent Visual-Inertial Navigation
This paper presents a novel approach to address the inconsistency problem caused by observability mismatch in visual-inertial navigation systems (VINS). The key idea involves applying a linear time-varying transformation to the error-state within the Error-State Kalman Filter (ESKF). This transformation ensures that the unobservable subspace of the transformed error-state system becomes independent of the state, thereby preserving the correct observability of the transformed system against variations in linearization points. We introduce the Transformed ESKF (T-ESKF), a consistent VINS estimator that performs state estimation using the transformed error-state system. Furthermore, we develop an efficient propagation technique to accelerate the covariance propagation based on the transformation relationship between the transition and accumulated matrices of T-ESKF and ESKF. We validate the proposed method through extensive simulations and experiments, demonstrating better (or competitive at least) performance compared to state-of-the-art methods.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.