利用气动物理储层计算控制气动软弯曲执行器的前馈滞后补偿

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-12-26 DOI:10.1109/LRA.2024.3523229
Junyi Shen;Tetsuro Miyazaki;Kenji Kawashima
{"title":"利用气动物理储层计算控制气动软弯曲执行器的前馈滞后补偿","authors":"Junyi Shen;Tetsuro Miyazaki;Kenji Kawashima","doi":"10.1109/LRA.2024.3523229","DOIUrl":null,"url":null,"abstract":"The nonlinearities of soft robots bring control challenges like hysteresis but also provide them with computational capacities. This letter introduces a fuzzy pneumatic physical reservoir computing (FPRC) model for feedforward hysteresis compensation in motion tracking control of soft actuators. Our method utilizes a pneumatic bending actuator as a physical reservoir with nonlinear computing capacities to control another pneumatic bending actuator. The FPRC model employs a Takagi-Sugeno (T-S) fuzzy logic to process outputs from the physical reservoir. The proposed FPRC model shows equivalent training performance to an Echo State Network (ESN) model, whereas it exhibits better test accuracies with significantly reduced execution time. Experiments validate the FPRC model's effectiveness in controlling the bending motion of a pneumatic soft actuator with open-loop and closed-loop control system setups. The proposed FPRC model's robustness against environmental disturbances has also been experimentally verified. To the authors' knowledge, this is the first implementation of a physical system in the feedforward hysteresis compensation model for controlling soft actuators. This study is expected to advance physical reservoir computing in nonlinear control applications and extend the feedforward hysteresis compensation methods for controlling soft actuators.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1664-1671"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816480","citationCount":"0","resultStr":"{\"title\":\"Control Pneumatic Soft Bending Actuator With Feedforward Hysteresis Compensation by Pneumatic Physical Reservoir Computing\",\"authors\":\"Junyi Shen;Tetsuro Miyazaki;Kenji Kawashima\",\"doi\":\"10.1109/LRA.2024.3523229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonlinearities of soft robots bring control challenges like hysteresis but also provide them with computational capacities. This letter introduces a fuzzy pneumatic physical reservoir computing (FPRC) model for feedforward hysteresis compensation in motion tracking control of soft actuators. Our method utilizes a pneumatic bending actuator as a physical reservoir with nonlinear computing capacities to control another pneumatic bending actuator. The FPRC model employs a Takagi-Sugeno (T-S) fuzzy logic to process outputs from the physical reservoir. The proposed FPRC model shows equivalent training performance to an Echo State Network (ESN) model, whereas it exhibits better test accuracies with significantly reduced execution time. Experiments validate the FPRC model's effectiveness in controlling the bending motion of a pneumatic soft actuator with open-loop and closed-loop control system setups. The proposed FPRC model's robustness against environmental disturbances has also been experimentally verified. To the authors' knowledge, this is the first implementation of a physical system in the feedforward hysteresis compensation model for controlling soft actuators. This study is expected to advance physical reservoir computing in nonlinear control applications and extend the feedforward hysteresis compensation methods for controlling soft actuators.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 2\",\"pages\":\"1664-1671\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816480\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816480/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816480/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

软机器人的非线性给控制带来了滞后等挑战,但也为其提供了计算能力。本文介绍了一种用于软执行器运动跟踪控制中前馈滞后补偿的模糊气动物理储层计算(FPRC)模型。我们的方法利用一个气动弯曲驱动器作为一个具有非线性计算能力的物理储层来控制另一个气动弯曲驱动器。FPRC模型采用Takagi-Sugeno (T-S)模糊逻辑来处理物理储层的输出。所提出的FPRC模型具有与回声状态网络(ESN)模型相当的训练性能,同时在显着减少执行时间的情况下具有更好的测试准确性。通过开环和闭环控制系统的设置,验证了FPRC模型对气动软执行器弯曲运动控制的有效性。实验还验证了所提出的FPRC模型对环境干扰的鲁棒性。据作者所知,这是第一次在控制软执行器的前馈滞后补偿模型中实现物理系统。该研究有望推动物理储层计算在非线性控制中的应用,并扩展控制软执行器的前馈滞后补偿方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Control Pneumatic Soft Bending Actuator With Feedforward Hysteresis Compensation by Pneumatic Physical Reservoir Computing
The nonlinearities of soft robots bring control challenges like hysteresis but also provide them with computational capacities. This letter introduces a fuzzy pneumatic physical reservoir computing (FPRC) model for feedforward hysteresis compensation in motion tracking control of soft actuators. Our method utilizes a pneumatic bending actuator as a physical reservoir with nonlinear computing capacities to control another pneumatic bending actuator. The FPRC model employs a Takagi-Sugeno (T-S) fuzzy logic to process outputs from the physical reservoir. The proposed FPRC model shows equivalent training performance to an Echo State Network (ESN) model, whereas it exhibits better test accuracies with significantly reduced execution time. Experiments validate the FPRC model's effectiveness in controlling the bending motion of a pneumatic soft actuator with open-loop and closed-loop control system setups. The proposed FPRC model's robustness against environmental disturbances has also been experimentally verified. To the authors' knowledge, this is the first implementation of a physical system in the feedforward hysteresis compensation model for controlling soft actuators. This study is expected to advance physical reservoir computing in nonlinear control applications and extend the feedforward hysteresis compensation methods for controlling soft actuators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Table of Contents IEEE Robotics and Automation Letters Information for Authors IEEE Robotics and Automation Society Information IEEE Robotics and Automation Society Information PneuSIC Box: Pneumatic Sequential and Independent Control Box for Scalable Demultiplexing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1