Maurice Kolff;Joost Venrooij;Elena Arcidiacono;Daan M. Pool;Max Mulder
{"title":"闭环和开环城市驾驶仿真中运动不一致等级的预测","authors":"Maurice Kolff;Joost Venrooij;Elena Arcidiacono;Daan M. Pool;Max Mulder","doi":"10.1109/TITS.2024.3503496","DOIUrl":null,"url":null,"abstract":"This paper presents a three-step validation approach for subjective rating predictions of driving simulator motion incongruences based on objective mismatches between reference vehicle and simulator motion. This approach relies on using high-resolution rating predictions of open-loop driving (participants being driven) for ratings of motion in closed-loop driving (participants driving themselves). A driving simulator experiment in an urban scenario is described, of which the rating data of 36 participants was recorded and analyzed. In the experiment’s first phase, participants actively drove themselves (i.e., closed-loop). By recording the drives of the participants and playing these back to themselves (open-loop) in the second phase, participants experienced the same motion in both phases. Participants rated the motion after each maneuver and at the end of each drive. In the third phase they again drove open-loop, but rated the motion continuously, only possible in open-loop driving. Results show that a rating model, acquired through a different experiment, can well predict the measured continuous ratings. Second, the maximum of the measured continuous ratings correlates to both the maneuver-based (<inline-formula> <tex-math>$\\rho =0.94$ </tex-math></inline-formula>) and overall (<inline-formula> <tex-math>$\\rho =0.69$ </tex-math></inline-formula>) ratings, allowing for predictions of both rating types based on the continuous rating model. Third, using Bayesian statistics it is then shown that both the maneuver-based and overall ratings between the closed-loop and open-loop drives are equivalent. This allows for predictions of maneuver-based and overall ratings using the high-resolution continuous rating models. These predictions can be used as an accurate trade-off method of motion cueing settings of future closed-loop driving simulator experiments.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 1","pages":"517-528"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Motion Incongruence Ratings in Closed- and Open-Loop Urban Driving Simulation\",\"authors\":\"Maurice Kolff;Joost Venrooij;Elena Arcidiacono;Daan M. Pool;Max Mulder\",\"doi\":\"10.1109/TITS.2024.3503496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a three-step validation approach for subjective rating predictions of driving simulator motion incongruences based on objective mismatches between reference vehicle and simulator motion. This approach relies on using high-resolution rating predictions of open-loop driving (participants being driven) for ratings of motion in closed-loop driving (participants driving themselves). A driving simulator experiment in an urban scenario is described, of which the rating data of 36 participants was recorded and analyzed. In the experiment’s first phase, participants actively drove themselves (i.e., closed-loop). By recording the drives of the participants and playing these back to themselves (open-loop) in the second phase, participants experienced the same motion in both phases. Participants rated the motion after each maneuver and at the end of each drive. In the third phase they again drove open-loop, but rated the motion continuously, only possible in open-loop driving. Results show that a rating model, acquired through a different experiment, can well predict the measured continuous ratings. Second, the maximum of the measured continuous ratings correlates to both the maneuver-based (<inline-formula> <tex-math>$\\\\rho =0.94$ </tex-math></inline-formula>) and overall (<inline-formula> <tex-math>$\\\\rho =0.69$ </tex-math></inline-formula>) ratings, allowing for predictions of both rating types based on the continuous rating model. Third, using Bayesian statistics it is then shown that both the maneuver-based and overall ratings between the closed-loop and open-loop drives are equivalent. This allows for predictions of maneuver-based and overall ratings using the high-resolution continuous rating models. These predictions can be used as an accurate trade-off method of motion cueing settings of future closed-loop driving simulator experiments.\",\"PeriodicalId\":13416,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Transportation Systems\",\"volume\":\"26 1\",\"pages\":\"517-528\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10841912/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10841912/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Predicting Motion Incongruence Ratings in Closed- and Open-Loop Urban Driving Simulation
This paper presents a three-step validation approach for subjective rating predictions of driving simulator motion incongruences based on objective mismatches between reference vehicle and simulator motion. This approach relies on using high-resolution rating predictions of open-loop driving (participants being driven) for ratings of motion in closed-loop driving (participants driving themselves). A driving simulator experiment in an urban scenario is described, of which the rating data of 36 participants was recorded and analyzed. In the experiment’s first phase, participants actively drove themselves (i.e., closed-loop). By recording the drives of the participants and playing these back to themselves (open-loop) in the second phase, participants experienced the same motion in both phases. Participants rated the motion after each maneuver and at the end of each drive. In the third phase they again drove open-loop, but rated the motion continuously, only possible in open-loop driving. Results show that a rating model, acquired through a different experiment, can well predict the measured continuous ratings. Second, the maximum of the measured continuous ratings correlates to both the maneuver-based ($\rho =0.94$ ) and overall ($\rho =0.69$ ) ratings, allowing for predictions of both rating types based on the continuous rating model. Third, using Bayesian statistics it is then shown that both the maneuver-based and overall ratings between the closed-loop and open-loop drives are equivalent. This allows for predictions of maneuver-based and overall ratings using the high-resolution continuous rating models. These predictions can be used as an accurate trade-off method of motion cueing settings of future closed-loop driving simulator experiments.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.