扩散透析酸回收用bppo基阴离子交换膜

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY New Journal of Chemistry Pub Date : 2024-12-17 DOI:10.1039/D4NJ04677C
Yong Chen, Shengxuan Fan, Chao Peng, Bingyue Song, Mengting Qin, Yi Wang, Yanjun Huang, Shefeng Li and Lei Zhang
{"title":"扩散透析酸回收用bppo基阴离子交换膜","authors":"Yong Chen, Shengxuan Fan, Chao Peng, Bingyue Song, Mengting Qin, Yi Wang, Yanjun Huang, Shefeng Li and Lei Zhang","doi":"10.1039/D4NJ04677C","DOIUrl":null,"url":null,"abstract":"<p >Diffusion dialysis (DD) with anion exchange membranes (AEMs) as the core component is an ideal technology for acid recovery from acidic wastewater. Herein, a series of TEA–BPPO AEMs were prepared from triethanolamine (TEA) and brominated polyphenylene ether (BPPO) using the solution casting method. The structures of the prepared membranes were characterized and analyzed through nuclear magnetic resonance hydrogen spectroscopy (<small><sup>1</sup></small>H NMR), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). In addition, the properties of the membranes, such as ion exchange capacity (IEC), linear swelling rate (LSR), water uptake (<em>W</em><small><sub>U</sub></small>), chemical stability, thermal stability and mechanical stability, were explored. In DD experiments, the optimal AEM (<em>i.e.</em>, TEA–BPPO–M80) applied to simulate acid recovery from a mixed HCl (1 mol L<small><sup>−1</sup></small>)/FeCl<small><sub>2</sub></small> (0.2 mol L<small><sup>−1</sup></small>) solution exhibited an acid dialysis coefficient (<em>U</em><small><sub>H<small><sup>+</sup></small></sub></small>) of 0.0629 m h<small><sup>−1</sup></small> and separation factor (<em>S</em>) of 97.78, which were significantly better than those of the commercial membrane DF-120. In addition, the TEA–BPPO–M80 AEM exhibited excellent thermal stability and acid resistance. In summary, the prepared membranes possess great potential for application in DD acid recovery.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 3","pages":" 845-854"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BPPO-based anion exchange membranes for acid recovery via diffusion dialysis\",\"authors\":\"Yong Chen, Shengxuan Fan, Chao Peng, Bingyue Song, Mengting Qin, Yi Wang, Yanjun Huang, Shefeng Li and Lei Zhang\",\"doi\":\"10.1039/D4NJ04677C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Diffusion dialysis (DD) with anion exchange membranes (AEMs) as the core component is an ideal technology for acid recovery from acidic wastewater. Herein, a series of TEA–BPPO AEMs were prepared from triethanolamine (TEA) and brominated polyphenylene ether (BPPO) using the solution casting method. The structures of the prepared membranes were characterized and analyzed through nuclear magnetic resonance hydrogen spectroscopy (<small><sup>1</sup></small>H NMR), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). In addition, the properties of the membranes, such as ion exchange capacity (IEC), linear swelling rate (LSR), water uptake (<em>W</em><small><sub>U</sub></small>), chemical stability, thermal stability and mechanical stability, were explored. In DD experiments, the optimal AEM (<em>i.e.</em>, TEA–BPPO–M80) applied to simulate acid recovery from a mixed HCl (1 mol L<small><sup>−1</sup></small>)/FeCl<small><sub>2</sub></small> (0.2 mol L<small><sup>−1</sup></small>) solution exhibited an acid dialysis coefficient (<em>U</em><small><sub>H<small><sup>+</sup></small></sub></small>) of 0.0629 m h<small><sup>−1</sup></small> and separation factor (<em>S</em>) of 97.78, which were significantly better than those of the commercial membrane DF-120. In addition, the TEA–BPPO–M80 AEM exhibited excellent thermal stability and acid resistance. In summary, the prepared membranes possess great potential for application in DD acid recovery.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 3\",\"pages\":\" 845-854\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj04677c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj04677c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以阴离子交换膜(AEMs)为核心组分的扩散透析(DD)是一种理想的酸性废水酸回收技术。本文以三乙醇胺(TEA)和溴化聚苯醚(BPPO)为原料,采用溶液浇铸法制备了一系列TEA - BPPO AEMs。通过核磁共振氢谱(1H NMR)、x射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)对所制备膜的结构进行了表征和分析。此外,还考察了膜的离子交换容量(IEC)、线性膨胀率(LSR)、吸水率(WU)、化学稳定性、热稳定性和机械稳定性等性能。在DD实验中,用于模拟HCl (1 mol L−1)/FeCl2 (0.2 mol L−1)混合溶液中酸回收的最佳AEM (TEA-BPPO-M80)的酸透析系数(UH+)为0.0629 m h−1,分离因子(S)为97.78,显著优于商用膜DF-120。此外,TEA-BPPO-M80 AEM具有优异的热稳定性和耐酸性能。综上所述,所制备的膜在DD酸回收中具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BPPO-based anion exchange membranes for acid recovery via diffusion dialysis

Diffusion dialysis (DD) with anion exchange membranes (AEMs) as the core component is an ideal technology for acid recovery from acidic wastewater. Herein, a series of TEA–BPPO AEMs were prepared from triethanolamine (TEA) and brominated polyphenylene ether (BPPO) using the solution casting method. The structures of the prepared membranes were characterized and analyzed through nuclear magnetic resonance hydrogen spectroscopy (1H NMR), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). In addition, the properties of the membranes, such as ion exchange capacity (IEC), linear swelling rate (LSR), water uptake (WU), chemical stability, thermal stability and mechanical stability, were explored. In DD experiments, the optimal AEM (i.e., TEA–BPPO–M80) applied to simulate acid recovery from a mixed HCl (1 mol L−1)/FeCl2 (0.2 mol L−1) solution exhibited an acid dialysis coefficient (UH+) of 0.0629 m h−1 and separation factor (S) of 97.78, which were significantly better than those of the commercial membrane DF-120. In addition, the TEA–BPPO–M80 AEM exhibited excellent thermal stability and acid resistance. In summary, the prepared membranes possess great potential for application in DD acid recovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
期刊最新文献
Back cover Back cover Development and validation of a high-throughput HPLC-MS/MS method for the simultaneous determination of exatecan and its cathepsin B-sensitive prodrug in rat plasma† A bimetallic catalyst of Fe–Co nanocomposite encapsulated in N-doped carbon nanotubes for colorimetric monitoring and degradation of hydroquinone in rivers† Impact of coordinated nitrogen atoms on the electrocatalytic water oxidation properties of copper complexes with pentadentate ligands†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1