{"title":"基于客户端关系图的个性化联邦知识图嵌入","authors":"Xiaoxiong Zhang, Zhiwei Zeng, Xin Zhou, Dusit Niyato, ZhiQi Shen","doi":"10.1007/s10489-024-06211-5","DOIUrl":null,"url":null,"abstract":"<div><p>Federated Knowledge Graph Embedding (FKGE) has recently garnered considerable interest due to its capacity to extract expressive representations from distributed knowledge graphs, while concurrently safeguarding the privacy of individual clients. Existing FKGE methods typically harness the arithmetic mean of entity embeddings from all clients as the global supplementary knowledge, and learn a replica of global consensus entities embeddings for each client. However, these methods usually neglect the inherent semantic disparities among distinct clients. This oversight not only results in the globally shared complementary knowledge being inundated with too much noise when tailored to a specific client, but also instigates a discrepancy between local and global optimization objectives. Consequently, the quality of the learned embeddings is compromised. To address this, we propose <b>P</b>ersonalized <b>Fed</b>erated knowledge graph <b>E</b>mbedding with client-wise relation <b>G</b>raph (<b>PFedEG</b>), a novel approach that employs a client-wise relation graph to learn personalized embeddings by discerning the semantic relevance of embeddings from other clients. Specifically, PFedEG learns personalized supplementary knowledge for each client by amalgamating entity embedding from its neighboring clients based on their “affinity” on the client-wise relation graph. Each client then conducts personalized embedding learning based on its local triples and personalized supplementary knowledge. We conduct extensive experiments on four benchmark datasets to evaluate our method against state-of-the-art models and results demonstrate the superiority of our method.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized federated knowledge graph embedding with client-wise relation graph\",\"authors\":\"Xiaoxiong Zhang, Zhiwei Zeng, Xin Zhou, Dusit Niyato, ZhiQi Shen\",\"doi\":\"10.1007/s10489-024-06211-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Federated Knowledge Graph Embedding (FKGE) has recently garnered considerable interest due to its capacity to extract expressive representations from distributed knowledge graphs, while concurrently safeguarding the privacy of individual clients. Existing FKGE methods typically harness the arithmetic mean of entity embeddings from all clients as the global supplementary knowledge, and learn a replica of global consensus entities embeddings for each client. However, these methods usually neglect the inherent semantic disparities among distinct clients. This oversight not only results in the globally shared complementary knowledge being inundated with too much noise when tailored to a specific client, but also instigates a discrepancy between local and global optimization objectives. Consequently, the quality of the learned embeddings is compromised. To address this, we propose <b>P</b>ersonalized <b>Fed</b>erated knowledge graph <b>E</b>mbedding with client-wise relation <b>G</b>raph (<b>PFedEG</b>), a novel approach that employs a client-wise relation graph to learn personalized embeddings by discerning the semantic relevance of embeddings from other clients. Specifically, PFedEG learns personalized supplementary knowledge for each client by amalgamating entity embedding from its neighboring clients based on their “affinity” on the client-wise relation graph. Each client then conducts personalized embedding learning based on its local triples and personalized supplementary knowledge. We conduct extensive experiments on four benchmark datasets to evaluate our method against state-of-the-art models and results demonstrate the superiority of our method.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-06211-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06211-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Personalized federated knowledge graph embedding with client-wise relation graph
Federated Knowledge Graph Embedding (FKGE) has recently garnered considerable interest due to its capacity to extract expressive representations from distributed knowledge graphs, while concurrently safeguarding the privacy of individual clients. Existing FKGE methods typically harness the arithmetic mean of entity embeddings from all clients as the global supplementary knowledge, and learn a replica of global consensus entities embeddings for each client. However, these methods usually neglect the inherent semantic disparities among distinct clients. This oversight not only results in the globally shared complementary knowledge being inundated with too much noise when tailored to a specific client, but also instigates a discrepancy between local and global optimization objectives. Consequently, the quality of the learned embeddings is compromised. To address this, we propose Personalized Federated knowledge graph Embedding with client-wise relation Graph (PFedEG), a novel approach that employs a client-wise relation graph to learn personalized embeddings by discerning the semantic relevance of embeddings from other clients. Specifically, PFedEG learns personalized supplementary knowledge for each client by amalgamating entity embedding from its neighboring clients based on their “affinity” on the client-wise relation graph. Each client then conducts personalized embedding learning based on its local triples and personalized supplementary knowledge. We conduct extensive experiments on four benchmark datasets to evaluate our method against state-of-the-art models and results demonstrate the superiority of our method.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.