Theresa Wittrien , Anne Rühle , Christin Elgert , Ilka Mathar , Peter Sandner , Sönke Behrends
{"title":"Runcaciguat通过组氨酸激活可溶性胍基环化酶,组氨酸是血红素结合和一氧化氮激活所必需的。","authors":"Theresa Wittrien , Anne Rühle , Christin Elgert , Ilka Mathar , Peter Sandner , Sönke Behrends","doi":"10.1016/j.bcp.2025.116739","DOIUrl":null,"url":null,"abstract":"<div><div>Soluble guanylyl cyclase (sGC) is a well-established pharmacological target for the treatment of acute angina pectoris, pulmonary hypertension and heart failure. Histidine 105 in the heme binding pocket of sGC is a crucial residue for heme binding and natural enzyme activation by NO. It was assumed that the heme-free sGC mutants α<sub>1</sub>/β<sub>1</sub>H105F and α<sub>1</sub>/β<sub>1</sub>H105A were valuable research tools for studying NO independent sGC activators. These mutants have been used in drug screening and animal models. We confirm that the first generation of sGC activators cinaciguat and BAY 60-2770 activate the α<sub>1</sub>/β<sub>1</sub>H105F and α<sub>1</sub>/β<sub>1</sub>H105A mutants. In contrast, we show that the second generation sGC activators runcaciguat and BAY 543 only activate heme-free sGC when the β<sub>1</sub>H105 residue is present. By testing runcaciguat in β<sub>1</sub> H105F knock-in mice, we confirm this histidine-dependency in vivo. We propose a novel classification of sGC activators, distinguishing between the histidine-dependent activators runcaciguat and BAY 543 and the histidine-<u>in</u>dependent activators cinaciguat, BAY 60-2770 and BI<!--> <!-->703704. The histidine-dependency of some of the sGC activators provides a compelling rationale for a re-evaluation of previous research and drug development programs based on sGC histidine mutants. Whether the classification of sGC activators based on the activation mechanism also makes a therapeutic difference needs to be clarified in the future.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"232 ","pages":"Article 116739"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Runcaciguat activates soluble guanylyl cyclase via the histidine essential for heme binding and nitric oxide activation\",\"authors\":\"Theresa Wittrien , Anne Rühle , Christin Elgert , Ilka Mathar , Peter Sandner , Sönke Behrends\",\"doi\":\"10.1016/j.bcp.2025.116739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soluble guanylyl cyclase (sGC) is a well-established pharmacological target for the treatment of acute angina pectoris, pulmonary hypertension and heart failure. Histidine 105 in the heme binding pocket of sGC is a crucial residue for heme binding and natural enzyme activation by NO. It was assumed that the heme-free sGC mutants α<sub>1</sub>/β<sub>1</sub>H105F and α<sub>1</sub>/β<sub>1</sub>H105A were valuable research tools for studying NO independent sGC activators. These mutants have been used in drug screening and animal models. We confirm that the first generation of sGC activators cinaciguat and BAY 60-2770 activate the α<sub>1</sub>/β<sub>1</sub>H105F and α<sub>1</sub>/β<sub>1</sub>H105A mutants. In contrast, we show that the second generation sGC activators runcaciguat and BAY 543 only activate heme-free sGC when the β<sub>1</sub>H105 residue is present. By testing runcaciguat in β<sub>1</sub> H105F knock-in mice, we confirm this histidine-dependency in vivo. We propose a novel classification of sGC activators, distinguishing between the histidine-dependent activators runcaciguat and BAY 543 and the histidine-<u>in</u>dependent activators cinaciguat, BAY 60-2770 and BI<!--> <!-->703704. The histidine-dependency of some of the sGC activators provides a compelling rationale for a re-evaluation of previous research and drug development programs based on sGC histidine mutants. Whether the classification of sGC activators based on the activation mechanism also makes a therapeutic difference needs to be clarified in the future.</div></div>\",\"PeriodicalId\":8806,\"journal\":{\"name\":\"Biochemical pharmacology\",\"volume\":\"232 \",\"pages\":\"Article 116739\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006295225000012\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295225000012","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
可溶性胍基环化酶(sGC)是治疗急性心绞痛、肺动脉高压和心力衰竭的有效药物靶点。sGC血红素结合口袋中的组氨酸105是血红素结合和天然酶被NO激活的关键残基。我们认为无血红素sGC突变体α1/β1H105F和α1/β1H105A是研究NO独立sGC激活剂的有价值的研究工具。这些突变体已用于药物筛选和动物模型。我们证实第一代sGC激活剂cinaciguat和BAY 60-2770可以激活α1/β1H105F和α1/β1H105A突变体。相反,我们发现第二代sGC活化剂runcaciguat和BAY 543仅在β1H105残基存在时才能激活无血红素的sGC。通过在β 1h105f敲入小鼠中测试runcaciguat,我们在体内证实了这种组氨酸依赖性。我们提出了一种新的sGC激活剂分类方法,将依赖组氨酸的激活剂runcaciguat和BAY 543与不依赖组氨酸的激活剂cinaciguat, BAY 60-2770和BI703704区分开来。一些sGC激活剂的组氨酸依赖性为重新评估先前基于sGC组氨酸突变体的研究和药物开发计划提供了令人信服的理由。基于激活机制的sGC激活剂分类是否也会对治疗产生影响,还需要在未来进一步明确。
Runcaciguat activates soluble guanylyl cyclase via the histidine essential for heme binding and nitric oxide activation
Soluble guanylyl cyclase (sGC) is a well-established pharmacological target for the treatment of acute angina pectoris, pulmonary hypertension and heart failure. Histidine 105 in the heme binding pocket of sGC is a crucial residue for heme binding and natural enzyme activation by NO. It was assumed that the heme-free sGC mutants α1/β1H105F and α1/β1H105A were valuable research tools for studying NO independent sGC activators. These mutants have been used in drug screening and animal models. We confirm that the first generation of sGC activators cinaciguat and BAY 60-2770 activate the α1/β1H105F and α1/β1H105A mutants. In contrast, we show that the second generation sGC activators runcaciguat and BAY 543 only activate heme-free sGC when the β1H105 residue is present. By testing runcaciguat in β1 H105F knock-in mice, we confirm this histidine-dependency in vivo. We propose a novel classification of sGC activators, distinguishing between the histidine-dependent activators runcaciguat and BAY 543 and the histidine-independent activators cinaciguat, BAY 60-2770 and BI 703704. The histidine-dependency of some of the sGC activators provides a compelling rationale for a re-evaluation of previous research and drug development programs based on sGC histidine mutants. Whether the classification of sGC activators based on the activation mechanism also makes a therapeutic difference needs to be clarified in the future.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.