Eric M Ransom, Meghan A Wallace, Nathan P Wiederhold, Connie Cañete-Gibas, Carey-Ann D Burnham
{"title":"两种MALDI-TOF质谱系统及提取方法对临床标本中丝状真菌鉴定的评价。","authors":"Eric M Ransom, Meghan A Wallace, Nathan P Wiederhold, Connie Cañete-Gibas, Carey-Ann D Burnham","doi":"10.1128/jcm.01548-24","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid and accurate identification of cultured molds is important to determine clinical significance and therapeutic decision-making. Conventional mold identification uses phenotypic macroscopic and microscopic characterization; however, this can take days or weeks for colony maturity and definitive microscopic structure formation, be limited to genus-level identification, and be misidentified due to morphologic mimics or similarities between closely related species. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) revolutionized bacterial and yeast identification but remains uncommon for molds in part because of limited reference libraries. Here, a retrospective 5-year review at a large teaching hospital found that 88.6% of identified molds were in the Bruker Filamentous Fungi Library 3.0 and 91.5% in the VITEK Knowledge Base Library 3.2.0. A prospective evaluation was also performed on early growth from 205 consecutive, working clinical isolates. Each mold was processed using the VITEK chemical extraction method and modified NIH chemical plus bead-beating extraction method; both extractions were tested on both systems. When compared to conventional identification, more molds were identified using VITEK extractions over NIH extractions using the VITEK (65 and 59%) and Bruker (56 and 54%) systems, respectively, using the ≥1.5 log Bruker threshold. VITEK MS identified more molds, regardless of the extraction method. Isolates without consensus agreement (<i>n</i> = 116) underwent sequence-based identification, which demonstrated that conventional identification had the highest genus-level (84%) but lowest species-level (3%) identification rates compared to VITEK (59 and 52%, respectively) and Bruker (52 and 36%) using VITEK extractions. Taken together, our findings suggest both MALDI-TOF systems can supplement conventional mold identification to optimize identification rates with species-level distinction.</p><p><strong>Importance: </strong>Mold identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) remains uncommon in clinical laboratories. Contributing concerns include limited genus/species spectra in the MALDI-TOF MS libraries, varying success rates in the literature regarding extraction methods and instrumentation, and the lack of practical performance evaluations using early mold colony growth, which would be used in a clinical mycology laboratory. This study used multiple approaches to improve our understanding of the clinical utility and performance of MALDI-TOF MS mold identification.</p>","PeriodicalId":15511,"journal":{"name":"Journal of Clinical Microbiology","volume":" ","pages":"e0154824"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837564/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of two MALDI-TOF MS systems and extraction methods for identification of filamentous fungi recovered from clinical specimens.\",\"authors\":\"Eric M Ransom, Meghan A Wallace, Nathan P Wiederhold, Connie Cañete-Gibas, Carey-Ann D Burnham\",\"doi\":\"10.1128/jcm.01548-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rapid and accurate identification of cultured molds is important to determine clinical significance and therapeutic decision-making. Conventional mold identification uses phenotypic macroscopic and microscopic characterization; however, this can take days or weeks for colony maturity and definitive microscopic structure formation, be limited to genus-level identification, and be misidentified due to morphologic mimics or similarities between closely related species. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) revolutionized bacterial and yeast identification but remains uncommon for molds in part because of limited reference libraries. Here, a retrospective 5-year review at a large teaching hospital found that 88.6% of identified molds were in the Bruker Filamentous Fungi Library 3.0 and 91.5% in the VITEK Knowledge Base Library 3.2.0. A prospective evaluation was also performed on early growth from 205 consecutive, working clinical isolates. Each mold was processed using the VITEK chemical extraction method and modified NIH chemical plus bead-beating extraction method; both extractions were tested on both systems. When compared to conventional identification, more molds were identified using VITEK extractions over NIH extractions using the VITEK (65 and 59%) and Bruker (56 and 54%) systems, respectively, using the ≥1.5 log Bruker threshold. VITEK MS identified more molds, regardless of the extraction method. Isolates without consensus agreement (<i>n</i> = 116) underwent sequence-based identification, which demonstrated that conventional identification had the highest genus-level (84%) but lowest species-level (3%) identification rates compared to VITEK (59 and 52%, respectively) and Bruker (52 and 36%) using VITEK extractions. Taken together, our findings suggest both MALDI-TOF systems can supplement conventional mold identification to optimize identification rates with species-level distinction.</p><p><strong>Importance: </strong>Mold identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) remains uncommon in clinical laboratories. Contributing concerns include limited genus/species spectra in the MALDI-TOF MS libraries, varying success rates in the literature regarding extraction methods and instrumentation, and the lack of practical performance evaluations using early mold colony growth, which would be used in a clinical mycology laboratory. This study used multiple approaches to improve our understanding of the clinical utility and performance of MALDI-TOF MS mold identification.</p>\",\"PeriodicalId\":15511,\"journal\":{\"name\":\"Journal of Clinical Microbiology\",\"volume\":\" \",\"pages\":\"e0154824\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837564/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/jcm.01548-24\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jcm.01548-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Evaluation of two MALDI-TOF MS systems and extraction methods for identification of filamentous fungi recovered from clinical specimens.
Rapid and accurate identification of cultured molds is important to determine clinical significance and therapeutic decision-making. Conventional mold identification uses phenotypic macroscopic and microscopic characterization; however, this can take days or weeks for colony maturity and definitive microscopic structure formation, be limited to genus-level identification, and be misidentified due to morphologic mimics or similarities between closely related species. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) revolutionized bacterial and yeast identification but remains uncommon for molds in part because of limited reference libraries. Here, a retrospective 5-year review at a large teaching hospital found that 88.6% of identified molds were in the Bruker Filamentous Fungi Library 3.0 and 91.5% in the VITEK Knowledge Base Library 3.2.0. A prospective evaluation was also performed on early growth from 205 consecutive, working clinical isolates. Each mold was processed using the VITEK chemical extraction method and modified NIH chemical plus bead-beating extraction method; both extractions were tested on both systems. When compared to conventional identification, more molds were identified using VITEK extractions over NIH extractions using the VITEK (65 and 59%) and Bruker (56 and 54%) systems, respectively, using the ≥1.5 log Bruker threshold. VITEK MS identified more molds, regardless of the extraction method. Isolates without consensus agreement (n = 116) underwent sequence-based identification, which demonstrated that conventional identification had the highest genus-level (84%) but lowest species-level (3%) identification rates compared to VITEK (59 and 52%, respectively) and Bruker (52 and 36%) using VITEK extractions. Taken together, our findings suggest both MALDI-TOF systems can supplement conventional mold identification to optimize identification rates with species-level distinction.
Importance: Mold identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) remains uncommon in clinical laboratories. Contributing concerns include limited genus/species spectra in the MALDI-TOF MS libraries, varying success rates in the literature regarding extraction methods and instrumentation, and the lack of practical performance evaluations using early mold colony growth, which would be used in a clinical mycology laboratory. This study used multiple approaches to improve our understanding of the clinical utility and performance of MALDI-TOF MS mold identification.
期刊介绍:
The Journal of Clinical Microbiology® disseminates the latest research concerning the laboratory diagnosis of human and animal infections, along with the laboratory's role in epidemiology and the management of infectious diseases.