通过冻干稳定乳源性细胞外囊泡(mev):一种新的海藻糖和色氨酸配方,用于在长期储存期间保持结构和生物活性。

IF 5.7 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Biological Engineering Pub Date : 2025-01-13 DOI:10.1186/s13036-024-00470-z
Alan B Dogan, Spencer R Marsh, Rachel J Tschetter, Claire E Beard, Md R Amin, L Jane Jourdan, Robert G Gourdie
{"title":"通过冻干稳定乳源性细胞外囊泡(mev):一种新的海藻糖和色氨酸配方,用于在长期储存期间保持结构和生物活性。","authors":"Alan B Dogan, Spencer R Marsh, Rachel J Tschetter, Claire E Beard, Md R Amin, L Jane Jourdan, Robert G Gourdie","doi":"10.1186/s13036-024-00470-z","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature. Herein, we aim to characterize and engineer a freeze-dried, mEV formulation that can be stored at room temperature without sacrificing structure/bioactivity and can be reconstituted before delivery. In addition to undertaking established mEV assays of structure and function on our preparations, we introduce a novel, efficient, high throughput assay of mEV bioactivity based on Electric Cell Substrate Impedance Sensing (ECIS) in Human dermal fibroblast monolayers. By adding appropriate excipients, such as trehalose and tryptophan, we describe a protective formulation that preserves mEV bioactivity during long-term, room temperature storage. Our identification of the efficacy of tryptophan as a novel additive to mEV lyophilization solutions could represent a significant advancement in stabilizing small extracellular vesicles outside of cold storage conditions.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"4"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727230/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stabilizing milk-derived extracellular vesicles (mEVs) through lyophilization: a novel trehalose and tryptophan formulation for maintaining structure and Bioactivity during long-term storage.\",\"authors\":\"Alan B Dogan, Spencer R Marsh, Rachel J Tschetter, Claire E Beard, Md R Amin, L Jane Jourdan, Robert G Gourdie\",\"doi\":\"10.1186/s13036-024-00470-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature. Herein, we aim to characterize and engineer a freeze-dried, mEV formulation that can be stored at room temperature without sacrificing structure/bioactivity and can be reconstituted before delivery. In addition to undertaking established mEV assays of structure and function on our preparations, we introduce a novel, efficient, high throughput assay of mEV bioactivity based on Electric Cell Substrate Impedance Sensing (ECIS) in Human dermal fibroblast monolayers. By adding appropriate excipients, such as trehalose and tryptophan, we describe a protective formulation that preserves mEV bioactivity during long-term, room temperature storage. Our identification of the efficacy of tryptophan as a novel additive to mEV lyophilization solutions could represent a significant advancement in stabilizing small extracellular vesicles outside of cold storage conditions.</p>\",\"PeriodicalId\":15053,\"journal\":{\"name\":\"Journal of Biological Engineering\",\"volume\":\"19 1\",\"pages\":\"4\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727230/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Engineering\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13036-024-00470-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-024-00470-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

细胞外囊泡(EVs)因其在细胞-细胞信号传导、免疫调节、疾病发病机制、癌症、再生医学以及作为潜在的药物传递载体的意义而被广泛研究。然而,在良好生产规范分离/过滤和最终用户应用之间保持电动汽车的完整性和生物活性仍然是商业化的一贯瓶颈。从牛奶中分离出的乳源性细胞外囊泡(mEV)可以为大规模生产mEV提供相对低成本、可扩展的平台;然而,对于在室温下不稳定的生物制品,依赖冷供应链进行储存仍然是物流和财务负担。在此,我们的目标是表征和设计一种冷冻干燥的mEV配方,该配方可以在室温下储存而不牺牲结构/生物活性,并且可以在交付前重组。除了对我们的制剂进行结构和功能的mEV检测外,我们还介绍了一种基于细胞底物阻抗传感(ECIS)的新型,高效,高通量的人真皮成纤维细胞单层mEV生物活性检测。通过添加适当的赋形剂,如海藻糖和色氨酸,我们描述了一种保护性配方,可以在长期室温储存期间保持mEV的生物活性。我们鉴定的色氨酸作为mEV冻干溶液的新添加剂的功效可能代表了在冷藏条件外稳定小细胞外囊泡方面的重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stabilizing milk-derived extracellular vesicles (mEVs) through lyophilization: a novel trehalose and tryptophan formulation for maintaining structure and Bioactivity during long-term storage.

Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature. Herein, we aim to characterize and engineer a freeze-dried, mEV formulation that can be stored at room temperature without sacrificing structure/bioactivity and can be reconstituted before delivery. In addition to undertaking established mEV assays of structure and function on our preparations, we introduce a novel, efficient, high throughput assay of mEV bioactivity based on Electric Cell Substrate Impedance Sensing (ECIS) in Human dermal fibroblast monolayers. By adding appropriate excipients, such as trehalose and tryptophan, we describe a protective formulation that preserves mEV bioactivity during long-term, room temperature storage. Our identification of the efficacy of tryptophan as a novel additive to mEV lyophilization solutions could represent a significant advancement in stabilizing small extracellular vesicles outside of cold storage conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Engineering
Journal of Biological Engineering BIOCHEMICAL RESEARCH METHODS-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
7.10
自引率
1.80%
发文量
32
审稿时长
17 weeks
期刊介绍: Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to: Synthetic biology and cellular design Biomolecular, cellular and tissue engineering Bioproduction and metabolic engineering Biosensors Ecological and environmental engineering Biological engineering education and the biodesign process As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels. Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.
期刊最新文献
A new approach to off-gas analysis for shaken bioreactors showing high CTR and RQ accuracy. Engineering probiotic Escherichia coli for inflammation-responsive indoleacetic acid production using RiboJ-enhanced genetic circuits. Codeine 3-O-demethylase catalyzed biotransformation of morphinan alkaloids in Escherichia coli: site directed mutagenesis of terminal residues improves enzyme expression, stability and biotransformation yield. Bioprocess exploitation of microaerobic auto-induction using the example of rhamnolipid biosynthesis in Pseudomonas putida KT2440. BCL-2 overexpression exosomes promote the proliferation and migration of mesenchymal stem cells in hypoxic environment for skin injury in rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1