{"title":"探索前列腺癌化学预防的实验模型:氧化应激是转化研究的关键途径。","authors":"Aya Naiki-Ito, Taku Naiki, Satoru Takahashi","doi":"10.1111/pin.13509","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PCa) is the second most common cancer in men globally. Its growth is driven by oxidative stress associated with inflammation, aging, and environmental factors, including diet and lifestyle. These factors contribute to multiple stages of PCa progression, including progression to castration-resistant prostate cancer (CRPC). Therefore, oxidative stress represents an intriguing target for PCa chemoprevention and treatment. In vivo experimental models are crucial for understanding the mechanisms of PCa development, validating chemopreventive and therapeutic approaches, and translating preclinical results into clinical applications. We established a transgenic rat for adenocarcinoma of the prostate (TRAP) model, a transgenic rat that efficiently develops androgen-dependent adenocarcinoma, pathologically and biologically mimicking human PCa progression, to clarify the mechanisms of tumor progression, including the involvement of oxidative stress, and established a system for screening the chemopreventive effects of agents against PCa. Additionally, we derived a CRPC model from the TRAP model and developed a distant metastasis model, providing a comprehensive multistage rat model of prostate carcinogenesis. This review presents findings on the molecular mechanisms of PCa and the chemopreventive effects of natural compounds with antioxidant properties, such as polyphenols. We additionally described the potential for repositioning existing drugs with antiandrogenic activity for PCa chemoprevention.</p>","PeriodicalId":19806,"journal":{"name":"Pathology International","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring experimental models of prostate cancer in chemoprevention: Oxidative stress as a key pathway to translational research.\",\"authors\":\"Aya Naiki-Ito, Taku Naiki, Satoru Takahashi\",\"doi\":\"10.1111/pin.13509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer (PCa) is the second most common cancer in men globally. Its growth is driven by oxidative stress associated with inflammation, aging, and environmental factors, including diet and lifestyle. These factors contribute to multiple stages of PCa progression, including progression to castration-resistant prostate cancer (CRPC). Therefore, oxidative stress represents an intriguing target for PCa chemoprevention and treatment. In vivo experimental models are crucial for understanding the mechanisms of PCa development, validating chemopreventive and therapeutic approaches, and translating preclinical results into clinical applications. We established a transgenic rat for adenocarcinoma of the prostate (TRAP) model, a transgenic rat that efficiently develops androgen-dependent adenocarcinoma, pathologically and biologically mimicking human PCa progression, to clarify the mechanisms of tumor progression, including the involvement of oxidative stress, and established a system for screening the chemopreventive effects of agents against PCa. Additionally, we derived a CRPC model from the TRAP model and developed a distant metastasis model, providing a comprehensive multistage rat model of prostate carcinogenesis. This review presents findings on the molecular mechanisms of PCa and the chemopreventive effects of natural compounds with antioxidant properties, such as polyphenols. We additionally described the potential for repositioning existing drugs with antiandrogenic activity for PCa chemoprevention.</p>\",\"PeriodicalId\":19806,\"journal\":{\"name\":\"Pathology International\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathology International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/pin.13509\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/pin.13509","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
Exploring experimental models of prostate cancer in chemoprevention: Oxidative stress as a key pathway to translational research.
Prostate cancer (PCa) is the second most common cancer in men globally. Its growth is driven by oxidative stress associated with inflammation, aging, and environmental factors, including diet and lifestyle. These factors contribute to multiple stages of PCa progression, including progression to castration-resistant prostate cancer (CRPC). Therefore, oxidative stress represents an intriguing target for PCa chemoprevention and treatment. In vivo experimental models are crucial for understanding the mechanisms of PCa development, validating chemopreventive and therapeutic approaches, and translating preclinical results into clinical applications. We established a transgenic rat for adenocarcinoma of the prostate (TRAP) model, a transgenic rat that efficiently develops androgen-dependent adenocarcinoma, pathologically and biologically mimicking human PCa progression, to clarify the mechanisms of tumor progression, including the involvement of oxidative stress, and established a system for screening the chemopreventive effects of agents against PCa. Additionally, we derived a CRPC model from the TRAP model and developed a distant metastasis model, providing a comprehensive multistage rat model of prostate carcinogenesis. This review presents findings on the molecular mechanisms of PCa and the chemopreventive effects of natural compounds with antioxidant properties, such as polyphenols. We additionally described the potential for repositioning existing drugs with antiandrogenic activity for PCa chemoprevention.
期刊介绍:
Pathology International is the official English journal of the Japanese Society of Pathology, publishing articles of excellence in human and experimental pathology. The Journal focuses on the morphological study of the disease process and/or mechanisms. For human pathology, morphological investigation receives priority but manuscripts describing the result of any ancillary methods (cellular, chemical, immunological and molecular biological) that complement the morphology are accepted. Manuscript on experimental pathology that approach pathologenesis or mechanisms of disease processes are expected to report on the data obtained from models using cellular, biochemical, molecular biological, animal, immunological or other methods in conjunction with morphology. Manuscripts that report data on laboratory medicine (clinical pathology) without significant morphological contribution are not accepted.