构建基于实验体积、压力和应变的广义结构三维呼吸人体肺模型。

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS PLoS Computational Biology Pub Date : 2025-01-13 eCollection Date: 2025-01-01 DOI:10.1371/journal.pcbi.1012680
Arif Badrou, Crystal A Mariano, Gustavo O Ramirez, Matthew Shankel, Nuno Rebelo, Mona Eskandari
{"title":"构建基于实验体积、压力和应变的广义结构三维呼吸人体肺模型。","authors":"Arif Badrou, Crystal A Mariano, Gustavo O Ramirez, Matthew Shankel, Nuno Rebelo, Mona Eskandari","doi":"10.1371/journal.pcbi.1012680","DOIUrl":null,"url":null,"abstract":"<p><p>Respiratory diseases represent a significant healthcare burden, as evidenced by the devastating impact of COVID-19. Biophysical models offer the possibility to anticipate system behavior and provide insights into physiological functions, advancements which are comparatively and notably nascent when it comes to pulmonary mechanics research. In this context, an Inverse Finite Element Analysis (IFEA) pipeline is developed to construct the first continuously ventilated three-dimensional structurally representative pulmonary model informed by both organ- and tissue-level breathing experiments from a cadaveric human lung. Here we construct a generalizable computational framework directly validated by pressure, volume, and strain measurements using a novel inflating apparatus interfaced with adapted, lung-specific, digital image correlation techniques. The parenchyma, pleura, and airways are represented with a poroelastic formulation to simulate pressure flows within the lung lobes, calibrating the model's material properties with the global pressure-volume response and local tissue deformations strains. The optimization yielded the following shear moduli: parenchyma (2.8 kPa), airways (0.2 kPa), and pleura (1.7 Pa). The proposed complex multi-material model with multi-experimental inputs was successfully developed using human lung data, and reproduced the shape of the inflating pressure-volume curve and strain distribution values associated with pulmonary deformation. This advancement marks a significant step towards creating a generalizable human lung model for broad applications across animal models, such as porcine, mouse, and rat lungs to reproduce pathological states and improve performance investigations regarding medical therapeutics and intervention.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 1","pages":"e1012680"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729960/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards constructing a generalized structural 3D breathing human lung model based on experimental volumes, pressures, and strains.\",\"authors\":\"Arif Badrou, Crystal A Mariano, Gustavo O Ramirez, Matthew Shankel, Nuno Rebelo, Mona Eskandari\",\"doi\":\"10.1371/journal.pcbi.1012680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Respiratory diseases represent a significant healthcare burden, as evidenced by the devastating impact of COVID-19. Biophysical models offer the possibility to anticipate system behavior and provide insights into physiological functions, advancements which are comparatively and notably nascent when it comes to pulmonary mechanics research. In this context, an Inverse Finite Element Analysis (IFEA) pipeline is developed to construct the first continuously ventilated three-dimensional structurally representative pulmonary model informed by both organ- and tissue-level breathing experiments from a cadaveric human lung. Here we construct a generalizable computational framework directly validated by pressure, volume, and strain measurements using a novel inflating apparatus interfaced with adapted, lung-specific, digital image correlation techniques. The parenchyma, pleura, and airways are represented with a poroelastic formulation to simulate pressure flows within the lung lobes, calibrating the model's material properties with the global pressure-volume response and local tissue deformations strains. The optimization yielded the following shear moduli: parenchyma (2.8 kPa), airways (0.2 kPa), and pleura (1.7 Pa). The proposed complex multi-material model with multi-experimental inputs was successfully developed using human lung data, and reproduced the shape of the inflating pressure-volume curve and strain distribution values associated with pulmonary deformation. This advancement marks a significant step towards creating a generalizable human lung model for broad applications across animal models, such as porcine, mouse, and rat lungs to reproduce pathological states and improve performance investigations regarding medical therapeutics and intervention.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 1\",\"pages\":\"e1012680\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729960/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1012680\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012680","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

COVID-19的破坏性影响证明,呼吸道疾病是一项重大的医疗负担。生物物理模型提供了预测系统行为的可能性,并提供了对生理功能的见解,这些进展在肺力学研究中相对来说是新生的。在此背景下,研究人员开发了一种逆有限元分析(IFEA)管道,通过器官和组织水平的呼吸实验,构建了第一个连续通气的三维结构代表性肺模型。在这里,我们构建了一个可推广的计算框架,直接通过压力、体积和应变测量验证,使用一种新的充气装置,结合适应的、肺特异性的数字图像相关技术。薄壁组织、胸膜和气道用孔隙弹性公式表示,以模拟肺叶内的压力流动,用整体压力-体积响应和局部组织变形应变校准模型的材料特性。优化后的剪切模量为:实质(2.8 kPa)、气道(0.2 kPa)和胸膜(1.7 Pa)。利用人体肺数据成功建立了具有多实验输入的复杂多材料模型,并再现了与肺变形相关的充气压力-体积曲线形状和应变分布值。这一进展标志着朝着创建可推广的人类肺模型迈出了重要的一步,该模型可广泛应用于猪、小鼠和大鼠肺等动物模型,以再现病理状态,并改善医学治疗和干预方面的性能调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards constructing a generalized structural 3D breathing human lung model based on experimental volumes, pressures, and strains.

Respiratory diseases represent a significant healthcare burden, as evidenced by the devastating impact of COVID-19. Biophysical models offer the possibility to anticipate system behavior and provide insights into physiological functions, advancements which are comparatively and notably nascent when it comes to pulmonary mechanics research. In this context, an Inverse Finite Element Analysis (IFEA) pipeline is developed to construct the first continuously ventilated three-dimensional structurally representative pulmonary model informed by both organ- and tissue-level breathing experiments from a cadaveric human lung. Here we construct a generalizable computational framework directly validated by pressure, volume, and strain measurements using a novel inflating apparatus interfaced with adapted, lung-specific, digital image correlation techniques. The parenchyma, pleura, and airways are represented with a poroelastic formulation to simulate pressure flows within the lung lobes, calibrating the model's material properties with the global pressure-volume response and local tissue deformations strains. The optimization yielded the following shear moduli: parenchyma (2.8 kPa), airways (0.2 kPa), and pleura (1.7 Pa). The proposed complex multi-material model with multi-experimental inputs was successfully developed using human lung data, and reproduced the shape of the inflating pressure-volume curve and strain distribution values associated with pulmonary deformation. This advancement marks a significant step towards creating a generalizable human lung model for broad applications across animal models, such as porcine, mouse, and rat lungs to reproduce pathological states and improve performance investigations regarding medical therapeutics and intervention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
期刊最新文献
Suprachiasmatic nucleus-wide estimation of oscillatory temporal dynamics. Impact of increased diagnosis of early HIV infection and immediate antiretroviral treatment initiation on HIV transmission among men who have sex with men in the Netherlands. Noradrenergic and Dopaminergic modulation of meta-cognition and meta-control. An agent-based model to simulate the transmission dynamics of bloodborne pathogens within hospitals. An application of nowcasting methods: Cases of norovirus during the winter 2023/2024 in England.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1