纳米工程太赫兹技术的进展:太赫兹产生、调制和生物应用。

IF 11 1区 综合性期刊 Q1 Multidisciplinary Research Pub Date : 2025-01-13 eCollection Date: 2025-01-01 DOI:10.34133/research.0562
Zhongwei Jin, Jing Lou, Fangzhou Shu, Zhi Hong, Cheng-Wei Qiu
{"title":"纳米工程太赫兹技术的进展:太赫兹产生、调制和生物应用。","authors":"Zhongwei Jin, Jing Lou, Fangzhou Shu, Zhi Hong, Cheng-Wei Qiu","doi":"10.34133/research.0562","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in nanotechnology have revolutionized terahertz (THz) technology. By enabling the creation of compact, efficient devices through nanoscale structures, such as nano-thick heterostructures, metasurfaces, and hybrid systems, these innovations offer unprecedented control over THz wave generation and modulation. This has led to substantial enhancements in THz spectroscopy, imaging, and especially bio-applications, providing higher resolution and sensitivity. This review comprehensively examines the latest advancements in nanoengineered THz technology, beginning with state-of-the-art THz generation methods based on heterostructures, metasurfaces, and hybrid systems, followed by THz modulation techniques, including both homogeneous and individual modulation. Subsequently, it explores bio-applications such as novel biosensing and biofunction techniques. Finally, it summarizes findings and reflects on future trends and challenges in the field. Each section focuses on the physical mechanisms, structural designs, and performances, aiming to provide a thorough understanding of the advancements and potential of this rapidly evolving technology domain. This review aims to provide insights into the creation of next-generation nanoscale THz devices and applications while establishing a comprehensive foundation for addressing key issues that limit the full implementation of these promising technologies in real-world scenarios.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0562"},"PeriodicalIF":11.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725723/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances in Nanoengineered Terahertz Technology: Generation, Modulation, and Bio-Applications.\",\"authors\":\"Zhongwei Jin, Jing Lou, Fangzhou Shu, Zhi Hong, Cheng-Wei Qiu\",\"doi\":\"10.34133/research.0562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advancements in nanotechnology have revolutionized terahertz (THz) technology. By enabling the creation of compact, efficient devices through nanoscale structures, such as nano-thick heterostructures, metasurfaces, and hybrid systems, these innovations offer unprecedented control over THz wave generation and modulation. This has led to substantial enhancements in THz spectroscopy, imaging, and especially bio-applications, providing higher resolution and sensitivity. This review comprehensively examines the latest advancements in nanoengineered THz technology, beginning with state-of-the-art THz generation methods based on heterostructures, metasurfaces, and hybrid systems, followed by THz modulation techniques, including both homogeneous and individual modulation. Subsequently, it explores bio-applications such as novel biosensing and biofunction techniques. Finally, it summarizes findings and reflects on future trends and challenges in the field. Each section focuses on the physical mechanisms, structural designs, and performances, aiming to provide a thorough understanding of the advancements and potential of this rapidly evolving technology domain. This review aims to provide insights into the creation of next-generation nanoscale THz devices and applications while establishing a comprehensive foundation for addressing key issues that limit the full implementation of these promising technologies in real-world scenarios.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"8 \",\"pages\":\"0562\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725723/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0562\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0562","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

纳米技术的最新进展已经彻底改变了太赫兹(THz)技术。通过纳米级结构(如纳米厚异质结构、超表面和混合系统)创建紧凑、高效的设备,这些创新为太赫兹波的产生和调制提供了前所未有的控制。这导致了太赫兹光谱学,成像,特别是生物应用的实质性增强,提供更高的分辨率和灵敏度。本文全面研究了纳米工程太赫兹技术的最新进展,从基于异质结构、超表面和混合系统的最先进的太赫兹产生方法开始,然后是太赫兹调制技术,包括均匀调制和单个调制。随后,它探索生物应用,如新的生物传感和生物功能技术。最后,总结了研究结果,并对该领域的未来趋势和挑战进行了反思。每个部分都侧重于物理机制、结构设计和性能,旨在全面了解这个快速发展的技术领域的进步和潜力。这篇综述旨在为下一代纳米太赫兹器件和应用的创建提供见解,同时为解决限制这些有前途的技术在现实世界中全面实施的关键问题建立一个全面的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in Nanoengineered Terahertz Technology: Generation, Modulation, and Bio-Applications.

Recent advancements in nanotechnology have revolutionized terahertz (THz) technology. By enabling the creation of compact, efficient devices through nanoscale structures, such as nano-thick heterostructures, metasurfaces, and hybrid systems, these innovations offer unprecedented control over THz wave generation and modulation. This has led to substantial enhancements in THz spectroscopy, imaging, and especially bio-applications, providing higher resolution and sensitivity. This review comprehensively examines the latest advancements in nanoengineered THz technology, beginning with state-of-the-art THz generation methods based on heterostructures, metasurfaces, and hybrid systems, followed by THz modulation techniques, including both homogeneous and individual modulation. Subsequently, it explores bio-applications such as novel biosensing and biofunction techniques. Finally, it summarizes findings and reflects on future trends and challenges in the field. Each section focuses on the physical mechanisms, structural designs, and performances, aiming to provide a thorough understanding of the advancements and potential of this rapidly evolving technology domain. This review aims to provide insights into the creation of next-generation nanoscale THz devices and applications while establishing a comprehensive foundation for addressing key issues that limit the full implementation of these promising technologies in real-world scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
期刊最新文献
Erratum to "Sleep Promotion by 3-Hydroxy-4-iminobutyric Acid in Walnut Diaphragma Juglandis Fructus". Mesenchymal Stem Cells Carrying Viral Fusogenic Protein p14 to Treat Solid Tumors by Inducing Cell-Cell Fusion and Immune Activation. Fluorescent Particles Based on Aggregation-Induced Emission for Optical Diagnostics of the Central Nervous System. Biosynthesis of Lysosomally Escaped Apoptotic Bodies Inhibits Inflammasome Synthesis in Macrophages. Crosstalk between Gut Microbiota and Cancer Immunotherapy: Present Investigations and Future Perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1