不同机器学习方法在安慰剂对照重度抑郁症临床试验中预测非特异性治疗反应的比较

IF 3.1 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Cts-Clinical and Translational Science Pub Date : 2025-01-14 DOI:10.1111/cts.70128
Roberto Gomeni, Françoise Bressolle-Gomeni
{"title":"不同机器学习方法在安慰剂对照重度抑郁症临床试验中预测非特异性治疗反应的比较","authors":"Roberto Gomeni,&nbsp;Françoise Bressolle-Gomeni","doi":"10.1111/cts.70128","DOIUrl":null,"url":null,"abstract":"<p>Placebo effect represents a serious confounder for the assessment of treatment effect to the extent that it has become increasingly difficult to develop antidepressant medications appropriate for outperforming placebo. Treatment effect in randomized, placebo-controlled trials, is usually estimated by the mean baseline adjusted difference of treatment response in active and placebo arms and is function of treatment-specific and non-specific effects. The non-specific treatment effect varies subject by subject conditional to the individual propensity to respond to placebo. This effect is not estimable at an individual level using the conventional parallel-group study design, since each subject enrolled in the trial is assigned to receive either active treatment or placebo, but not both. The objective of this study was to conduct a comparative analysis of the machine learning methodologies to estimate the individual probability of a non-specific treatment effect. The estimated probability is expected to support novel methodological approaches for better controlling effect of excessively high placebo response. At this purpose, six machine learning methodologies (gradient boosting machine, lasso regression, logistic regression, support vector machines, <i>k</i>-nearest neighbors, and random forests) were compared to the multilayer perceptrons artificial neural network (ANN) methodology for predicting the probability of individual non-specific treatment response. ANN achieved the highest overall accuracy among all methods tested. A fivefold cross-validation was used to assess performances and risks of overfitting of the ANN model. The analysis conducted without subjects with non-specific effect indicated a significant increase of signal detection with significant increase in effect size.</p>","PeriodicalId":50610,"journal":{"name":"Cts-Clinical and Translational Science","volume":"18 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729444/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of Different Machine Learning Methodologies for Predicting the Non-Specific Treatment Response in Placebo Controlled Major Depressive Disorder Clinical Trials\",\"authors\":\"Roberto Gomeni,&nbsp;Françoise Bressolle-Gomeni\",\"doi\":\"10.1111/cts.70128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Placebo effect represents a serious confounder for the assessment of treatment effect to the extent that it has become increasingly difficult to develop antidepressant medications appropriate for outperforming placebo. Treatment effect in randomized, placebo-controlled trials, is usually estimated by the mean baseline adjusted difference of treatment response in active and placebo arms and is function of treatment-specific and non-specific effects. The non-specific treatment effect varies subject by subject conditional to the individual propensity to respond to placebo. This effect is not estimable at an individual level using the conventional parallel-group study design, since each subject enrolled in the trial is assigned to receive either active treatment or placebo, but not both. The objective of this study was to conduct a comparative analysis of the machine learning methodologies to estimate the individual probability of a non-specific treatment effect. The estimated probability is expected to support novel methodological approaches for better controlling effect of excessively high placebo response. At this purpose, six machine learning methodologies (gradient boosting machine, lasso regression, logistic regression, support vector machines, <i>k</i>-nearest neighbors, and random forests) were compared to the multilayer perceptrons artificial neural network (ANN) methodology for predicting the probability of individual non-specific treatment response. ANN achieved the highest overall accuracy among all methods tested. A fivefold cross-validation was used to assess performances and risks of overfitting of the ANN model. The analysis conducted without subjects with non-specific effect indicated a significant increase of signal detection with significant increase in effect size.</p>\",\"PeriodicalId\":50610,\"journal\":{\"name\":\"Cts-Clinical and Translational Science\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729444/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cts-Clinical and Translational Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cts.70128\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cts-Clinical and Translational Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cts.70128","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

安慰剂效应是评估治疗效果的一个严重干扰因素,以至于越来越难以开发出比安慰剂效果更好的抗抑郁药物。在随机安慰剂对照试验中,治疗效果通常是通过积极治疗组和安慰剂治疗组治疗反应的平均基线调整差值来估算的,是治疗特异性效应和非特异性效应的函数。非特异性治疗效果因人而异,取决于个体对安慰剂的反应倾向。使用传统的平行组研究设计无法在个体水平上估计这种效应,因为每个参加试验的受试者都被分配接受活性治疗或安慰剂,而不是同时接受两种治疗。本研究的目的是对机器学习方法进行比较分析,以估计非特异性治疗效果的个体概率。估计出的概率有望支持新的方法论,从而更好地控制过高的安慰剂反应效应。为此,研究人员比较了六种机器学习方法(梯度提升机、套索回归、逻辑回归、支持向量机、k-近邻和随机森林)和多层感知器人工神经网络(ANN)方法,以预测个体非特异性治疗反应的概率。在所有测试方法中,人工神经网络的总体准确率最高。五重交叉验证用于评估人工神经网络模型的性能和过拟合风险。在没有非特异性效应受试者的情况下进行的分析表明,随着效应大小的显著增加,信号检测率也显著增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Different Machine Learning Methodologies for Predicting the Non-Specific Treatment Response in Placebo Controlled Major Depressive Disorder Clinical Trials

Placebo effect represents a serious confounder for the assessment of treatment effect to the extent that it has become increasingly difficult to develop antidepressant medications appropriate for outperforming placebo. Treatment effect in randomized, placebo-controlled trials, is usually estimated by the mean baseline adjusted difference of treatment response in active and placebo arms and is function of treatment-specific and non-specific effects. The non-specific treatment effect varies subject by subject conditional to the individual propensity to respond to placebo. This effect is not estimable at an individual level using the conventional parallel-group study design, since each subject enrolled in the trial is assigned to receive either active treatment or placebo, but not both. The objective of this study was to conduct a comparative analysis of the machine learning methodologies to estimate the individual probability of a non-specific treatment effect. The estimated probability is expected to support novel methodological approaches for better controlling effect of excessively high placebo response. At this purpose, six machine learning methodologies (gradient boosting machine, lasso regression, logistic regression, support vector machines, k-nearest neighbors, and random forests) were compared to the multilayer perceptrons artificial neural network (ANN) methodology for predicting the probability of individual non-specific treatment response. ANN achieved the highest overall accuracy among all methods tested. A fivefold cross-validation was used to assess performances and risks of overfitting of the ANN model. The analysis conducted without subjects with non-specific effect indicated a significant increase of signal detection with significant increase in effect size.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cts-Clinical and Translational Science
Cts-Clinical and Translational Science 医学-医学:研究与实验
CiteScore
6.70
自引率
2.60%
发文量
234
审稿时长
6-12 weeks
期刊介绍: Clinical and Translational Science (CTS), an official journal of the American Society for Clinical Pharmacology and Therapeutics, highlights original translational medicine research that helps bridge laboratory discoveries with the diagnosis and treatment of human disease. Translational medicine is a multi-faceted discipline with a focus on translational therapeutics. In a broad sense, translational medicine bridges across the discovery, development, regulation, and utilization spectrum. Research may appear as Full Articles, Brief Reports, Commentaries, Phase Forwards (clinical trials), Reviews, or Tutorials. CTS also includes invited didactic content that covers the connections between clinical pharmacology and translational medicine. Best-in-class methodologies and best practices are also welcomed as Tutorials. These additional features provide context for research articles and facilitate understanding for a wide array of individuals interested in clinical and translational science. CTS welcomes high quality, scientifically sound, original manuscripts focused on clinical pharmacology and translational science, including animal, in vitro, in silico, and clinical studies supporting the breadth of drug discovery, development, regulation and clinical use of both traditional drugs and innovative modalities.
期刊最新文献
Inhibition of Tacrolimus Metabolism by Cannabidiol and Its Metabolites In Vitro A Randomized Hybrid-Effectiveness Trial Comparing Pharmacogenomics (PGx) to Standard Care: The PGx Applied to Chronic Pain Treatment in Primary Care (PGx-ACT) Trial AI In Action: Redefining Drug Discovery and Development Pharmacogenetic Information on Drug Labels of the Italian Agency of Medicines (AIFA): Actionability and Comparison Across Other Regulatory Agencies Pharmacokinetics of a Novel Piperaquine Dispersible Granules Formulation Under Fasting and Various Fed Conditions Versus Piperaquine Tablets When Fasted in Healthy Tanzanian Adults: A Randomized, Phase I Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1