{"title":"锌配位聚合物对水中Al3+和Fe2+/Fe3+离子的双模发光和比色传感。","authors":"Jitti Suebphanpho, Akarapon Hasodsong, Paskorn Supprung, Jaursup Boonmak","doi":"10.1016/j.saa.2025.125729","DOIUrl":null,"url":null,"abstract":"<p><p>A zinc(II) coordination polymer, [Zn(H<sub>2</sub>dhtp)(2,2'-bpy)(H<sub>2</sub>O)]<sub>n</sub> (1), has been utilized as a dual-mode luminescence-colorimetric sensor (H<sub>2</sub>dhtp<sup>2-</sup> = 2,5-dihydroxy terephthalate and 2,2'-bpy = 2,2'-bipyridine). The presence of hydroxyl groups in H<sub>2</sub>dhtp<sup>2-</sup> can promote excited-state intra- and intermolecular proton transfer (ESIPT) phenomena. Therefore, compound 1, which displays high stability in aqueous environments, exhibits a strong green-yellow photoluminescence. This luminescence signal can be considerably enhanced and blue-shifted upon the addition of Al<sup>3+</sup> ions with a limit of detection (LOD) of 0.15 μM, and it demonstrates significant resistance to interference from several competing metal ions. To demonstrate a practical application, 1@paper strips were fabricated that can visually detect the Al<sup>3+</sup> ion under a UV lamp. Moreover, 1 can detect either Fe<sup>2+</sup> or Fe<sup>3+</sup> ions in aqueous solutions by a visible color shift. Upon the incremental addition of Fe<sup>2+</sup> or Fe<sup>3+</sup> ions, the solution color changed from colorless to pink, exhibiting a pronounced absorption band at around 521 nm. The LODs were determined to be 1.55 and 0.34 μM for Fe<sup>2+</sup> and Fe<sup>3+</sup>, respectively. Furthermore, compound 1 was used for the determination of Fe<sup>3+</sup> ions in the real water samples, which can be evaluated on-site in real-time via a smartphone color-scanning application. The detection efficacy of 1 toward Al<sup>3+</sup> and Fe<sup>2+</sup>/Fe<sup>3+</sup> maintains significant luminescence stability and reusability.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"330 ","pages":"125729"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-mode luminescence and colorimetric sensing for Al<sup>3+</sup> and Fe<sup>2+</sup>/Fe<sup>3+</sup> ions in water using a zinc coordination polymer.\",\"authors\":\"Jitti Suebphanpho, Akarapon Hasodsong, Paskorn Supprung, Jaursup Boonmak\",\"doi\":\"10.1016/j.saa.2025.125729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A zinc(II) coordination polymer, [Zn(H<sub>2</sub>dhtp)(2,2'-bpy)(H<sub>2</sub>O)]<sub>n</sub> (1), has been utilized as a dual-mode luminescence-colorimetric sensor (H<sub>2</sub>dhtp<sup>2-</sup> = 2,5-dihydroxy terephthalate and 2,2'-bpy = 2,2'-bipyridine). The presence of hydroxyl groups in H<sub>2</sub>dhtp<sup>2-</sup> can promote excited-state intra- and intermolecular proton transfer (ESIPT) phenomena. Therefore, compound 1, which displays high stability in aqueous environments, exhibits a strong green-yellow photoluminescence. This luminescence signal can be considerably enhanced and blue-shifted upon the addition of Al<sup>3+</sup> ions with a limit of detection (LOD) of 0.15 μM, and it demonstrates significant resistance to interference from several competing metal ions. To demonstrate a practical application, 1@paper strips were fabricated that can visually detect the Al<sup>3+</sup> ion under a UV lamp. Moreover, 1 can detect either Fe<sup>2+</sup> or Fe<sup>3+</sup> ions in aqueous solutions by a visible color shift. Upon the incremental addition of Fe<sup>2+</sup> or Fe<sup>3+</sup> ions, the solution color changed from colorless to pink, exhibiting a pronounced absorption band at around 521 nm. The LODs were determined to be 1.55 and 0.34 μM for Fe<sup>2+</sup> and Fe<sup>3+</sup>, respectively. Furthermore, compound 1 was used for the determination of Fe<sup>3+</sup> ions in the real water samples, which can be evaluated on-site in real-time via a smartphone color-scanning application. The detection efficacy of 1 toward Al<sup>3+</sup> and Fe<sup>2+</sup>/Fe<sup>3+</sup> maintains significant luminescence stability and reusability.</p>\",\"PeriodicalId\":94213,\"journal\":{\"name\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"volume\":\"330 \",\"pages\":\"125729\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.saa.2025.125729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2025.125729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Dual-mode luminescence and colorimetric sensing for Al3+ and Fe2+/Fe3+ ions in water using a zinc coordination polymer.
A zinc(II) coordination polymer, [Zn(H2dhtp)(2,2'-bpy)(H2O)]n (1), has been utilized as a dual-mode luminescence-colorimetric sensor (H2dhtp2- = 2,5-dihydroxy terephthalate and 2,2'-bpy = 2,2'-bipyridine). The presence of hydroxyl groups in H2dhtp2- can promote excited-state intra- and intermolecular proton transfer (ESIPT) phenomena. Therefore, compound 1, which displays high stability in aqueous environments, exhibits a strong green-yellow photoluminescence. This luminescence signal can be considerably enhanced and blue-shifted upon the addition of Al3+ ions with a limit of detection (LOD) of 0.15 μM, and it demonstrates significant resistance to interference from several competing metal ions. To demonstrate a practical application, 1@paper strips were fabricated that can visually detect the Al3+ ion under a UV lamp. Moreover, 1 can detect either Fe2+ or Fe3+ ions in aqueous solutions by a visible color shift. Upon the incremental addition of Fe2+ or Fe3+ ions, the solution color changed from colorless to pink, exhibiting a pronounced absorption band at around 521 nm. The LODs were determined to be 1.55 and 0.34 μM for Fe2+ and Fe3+, respectively. Furthermore, compound 1 was used for the determination of Fe3+ ions in the real water samples, which can be evaluated on-site in real-time via a smartphone color-scanning application. The detection efficacy of 1 toward Al3+ and Fe2+/Fe3+ maintains significant luminescence stability and reusability.