电化学介导的聚对苯二甲酸乙酯(PET)的碱性水解和甲醇解

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2025-01-15 DOI:10.1021/acssuschemeng.4c08648
Samantha P. Bunke, Kindle S. Williams, William A. Tarpeh
{"title":"电化学介导的聚对苯二甲酸乙酯(PET)的碱性水解和甲醇解","authors":"Samantha P. Bunke, Kindle S. Williams, William A. Tarpeh","doi":"10.1021/acssuschemeng.4c08648","DOIUrl":null,"url":null,"abstract":"Low-impact, closed-loop recycling of plastics is crucial to sustainably managing these ubiquitous and resource-intense materials. Our approach aimed to improve chemical recycling by integrating it with electrochemical processes to generate reactants electrochemically and depolymerize plastic <i>in situ</i>, with the objective of reducing both costs and environmental impacts. We investigated electrochemically mediated alkaline hydrolysis and methanolysis of poly(ethylene terephthalate) (PET) to achieve the following advantages over conventional methods: access to more extreme reactivity from applying an electrochemical driving force, application of more moderate operating conditions, and process intensification. Total PET conversion and product yields were measured to systematically investigate the performance effects of the catholyte methanol content, anolyte buffering, and temperature. Leveraging these insights to improve experimental conditions, we achieved 45 mol % PET conversion in 5 h at ambient pressure and relatively moderate temperature (50 °C) in 0.1 M NaClO<sub>4</sub> (100 mol % methanol) catholyte and 0.1 M Na<sub>3</sub>PO<sub>4</sub> anolyte.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"7 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemically Mediated Alkaline Hydrolysis and Methanolysis of Poly(ethylene terephthalate) (PET)\",\"authors\":\"Samantha P. Bunke, Kindle S. Williams, William A. Tarpeh\",\"doi\":\"10.1021/acssuschemeng.4c08648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-impact, closed-loop recycling of plastics is crucial to sustainably managing these ubiquitous and resource-intense materials. Our approach aimed to improve chemical recycling by integrating it with electrochemical processes to generate reactants electrochemically and depolymerize plastic <i>in situ</i>, with the objective of reducing both costs and environmental impacts. We investigated electrochemically mediated alkaline hydrolysis and methanolysis of poly(ethylene terephthalate) (PET) to achieve the following advantages over conventional methods: access to more extreme reactivity from applying an electrochemical driving force, application of more moderate operating conditions, and process intensification. Total PET conversion and product yields were measured to systematically investigate the performance effects of the catholyte methanol content, anolyte buffering, and temperature. Leveraging these insights to improve experimental conditions, we achieved 45 mol % PET conversion in 5 h at ambient pressure and relatively moderate temperature (50 °C) in 0.1 M NaClO<sub>4</sub> (100 mol % methanol) catholyte and 0.1 M Na<sub>3</sub>PO<sub>4</sub> anolyte.\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssuschemeng.4c08648\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08648","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

低影响、闭环回收塑料对于可持续管理这些无处不在的资源密集型材料至关重要。我们的方法旨在通过将化学回收与电化学过程相结合,以电化学方式产生反应物并在原位解聚塑料,从而提高化学回收效率,以降低成本和对环境的影响。我们研究了电化学介导的聚对苯二甲酸乙酯(PET)的碱性水解和甲醇解,以实现比传统方法的以下优势:通过应用电化学驱动力获得更极端的反应性,应用更温和的操作条件,以及过程强化。测量了总PET转化率和产品收率,系统地研究了阴极液甲醇含量、阳极液缓冲和温度对性能的影响。利用这些见解来改善实验条件,我们在环境压力和相对温和的温度(50℃)下,在0.1 M NaClO4 (100 mol %甲醇)阴极电解质和0.1 M Na3PO4阳极电解质中,在5小时内实现了45 mol %的PET转化率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrochemically Mediated Alkaline Hydrolysis and Methanolysis of Poly(ethylene terephthalate) (PET)
Low-impact, closed-loop recycling of plastics is crucial to sustainably managing these ubiquitous and resource-intense materials. Our approach aimed to improve chemical recycling by integrating it with electrochemical processes to generate reactants electrochemically and depolymerize plastic in situ, with the objective of reducing both costs and environmental impacts. We investigated electrochemically mediated alkaline hydrolysis and methanolysis of poly(ethylene terephthalate) (PET) to achieve the following advantages over conventional methods: access to more extreme reactivity from applying an electrochemical driving force, application of more moderate operating conditions, and process intensification. Total PET conversion and product yields were measured to systematically investigate the performance effects of the catholyte methanol content, anolyte buffering, and temperature. Leveraging these insights to improve experimental conditions, we achieved 45 mol % PET conversion in 5 h at ambient pressure and relatively moderate temperature (50 °C) in 0.1 M NaClO4 (100 mol % methanol) catholyte and 0.1 M Na3PO4 anolyte.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Dual-Bed Radioiodine Capture from Complex Gas Streams with Zeolites: Regeneration and Reuse of Primary Sorbent Beds for Sustainable Waste Management Synergistic Effect of Boric Acid and Sodium Dodecyl Sulfate in Promoting CO2 Hydrate Formation under Static Conditions Leveraging a Dynamic Physical Cross-Linking Architecture to Enable Recycled PET with Exceptional Thermoplasticity and Toughness A Cooling Strategy for Photovoltaic Modules in Rear Encapsulation Film Correction to “Cellulose Microgel Toughening of Starch Nanocomposites: Exploiting the Advantages of Micro-Nanoscale Networks”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1