Jiang Xue Dong, Kai Xiao, Xiao Li Wu, Zhi Ying Zhong, Hao Yun Yuan, Shi Gang Shen, Ming Su, Na Li, Zhong Feng Gao, Fan Xia
{"title":"高量子产率铜纳米团簇与氮掺杂碳点集成用于S2-和Zn2的开关比例荧光传感。","authors":"Jiang Xue Dong, Kai Xiao, Xiao Li Wu, Zhi Ying Zhong, Hao Yun Yuan, Shi Gang Shen, Ming Su, Na Li, Zhong Feng Gao, Fan Xia","doi":"10.1016/j.talanta.2025.127565","DOIUrl":null,"url":null,"abstract":"<p><p>Pursuing nanomaterials with high fluorescence quantum yields is of great significance in the fields of bioimaging, medical diagnosis, and food safety monitoring. This work reports on orange-emitting aggregation-induced emission (AIE) copper nanoclusters (Cu NCs) integrated with blue-emitting nitrogen-doped carbon dots (N-CDs), which enables highly sensitive detection of S<sup>2-</sup> and Zn<sup>2+</sup> ions through an off-on ratiometric fluorescence method. The highly emissive Cu NCs was doped by Ce<sup>3+</sup> with a high quantum yield of 51.30 % in aqueous solution. The S<sup>2-</sup> can induce fluorescence quenching of AIE Cu NCs/N-CDs from orange to blue, while Zn<sup>2+</sup> can restore the orange fluorescence. The probe provided linear detection ranges of 0.5-170 μM for S<sup>2-</sup> and 0.05-200 μM for Zn<sup>2+</sup>, with detection limits of 0.17 μM and 0.02 μM, respectively. Moreover, a smartphone assistant ratiometric fluorescent test strips were developed for the rapid and visual detection of S<sup>2-</sup> and Zn<sup>2+</sup>. The AIE Cu NCs/N-CDs probe exhibited diverse fluorescence color responses, high fluorescence stability, and low cytotoxicity. The ratiometric system was successfully applied to the detection of S<sup>2-</sup> and Zn<sup>2+</sup> in real water samples as well as in cellular and living imaging, demonstrating its potential in biochemical analysis and food safety monitoring.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127565"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High quantum yield copper nanoclusters integrated with nitrogen-doped carbon dots for off-on ratiometric fluorescence sensing of S<sup>2-</sup> and Zn<sup>2</sup>.\",\"authors\":\"Jiang Xue Dong, Kai Xiao, Xiao Li Wu, Zhi Ying Zhong, Hao Yun Yuan, Shi Gang Shen, Ming Su, Na Li, Zhong Feng Gao, Fan Xia\",\"doi\":\"10.1016/j.talanta.2025.127565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pursuing nanomaterials with high fluorescence quantum yields is of great significance in the fields of bioimaging, medical diagnosis, and food safety monitoring. This work reports on orange-emitting aggregation-induced emission (AIE) copper nanoclusters (Cu NCs) integrated with blue-emitting nitrogen-doped carbon dots (N-CDs), which enables highly sensitive detection of S<sup>2-</sup> and Zn<sup>2+</sup> ions through an off-on ratiometric fluorescence method. The highly emissive Cu NCs was doped by Ce<sup>3+</sup> with a high quantum yield of 51.30 % in aqueous solution. The S<sup>2-</sup> can induce fluorescence quenching of AIE Cu NCs/N-CDs from orange to blue, while Zn<sup>2+</sup> can restore the orange fluorescence. The probe provided linear detection ranges of 0.5-170 μM for S<sup>2-</sup> and 0.05-200 μM for Zn<sup>2+</sup>, with detection limits of 0.17 μM and 0.02 μM, respectively. Moreover, a smartphone assistant ratiometric fluorescent test strips were developed for the rapid and visual detection of S<sup>2-</sup> and Zn<sup>2+</sup>. The AIE Cu NCs/N-CDs probe exhibited diverse fluorescence color responses, high fluorescence stability, and low cytotoxicity. The ratiometric system was successfully applied to the detection of S<sup>2-</sup> and Zn<sup>2+</sup> in real water samples as well as in cellular and living imaging, demonstrating its potential in biochemical analysis and food safety monitoring.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"286 \",\"pages\":\"127565\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2025.127565\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.127565","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
追求高荧光量子产率的纳米材料在生物成像、医学诊断、食品安全监测等领域具有重要意义。本文报道了一种结合蓝色发射氮掺杂碳点(N-CDs)的橙色发射聚集诱导发射(AIE)铜纳米团簇(Cu NCs),通过开关比例荧光法实现了对S2-和Zn2+离子的高灵敏度检测。采用Ce3+掺杂制备了高发射率的Cu NCs,在水溶液中量子产率高达51.30%。S2-可以诱导AIE Cu nc /N-CDs的荧光从橙色猝灭为蓝色,而Zn2+可以恢复其橙色荧光。探针对S2-和Zn2+的线性检测范围分别为0.5 ~ 170 μM和0.05 ~ 200 μM,检出限分别为0.17 μM和0.02 μM。此外,还开发了一种智能手机辅助比例荧光试纸,用于快速、直观地检测S2-和Zn2+。AIE Cu NCs/N-CDs探针具有不同的荧光颜色响应,高荧光稳定性和低细胞毒性。该系统已成功应用于实际水样中S2-和Zn2+的检测以及细胞和活体成像,显示了其在生化分析和食品安全监测方面的潜力。
High quantum yield copper nanoclusters integrated with nitrogen-doped carbon dots for off-on ratiometric fluorescence sensing of S2- and Zn2.
Pursuing nanomaterials with high fluorescence quantum yields is of great significance in the fields of bioimaging, medical diagnosis, and food safety monitoring. This work reports on orange-emitting aggregation-induced emission (AIE) copper nanoclusters (Cu NCs) integrated with blue-emitting nitrogen-doped carbon dots (N-CDs), which enables highly sensitive detection of S2- and Zn2+ ions through an off-on ratiometric fluorescence method. The highly emissive Cu NCs was doped by Ce3+ with a high quantum yield of 51.30 % in aqueous solution. The S2- can induce fluorescence quenching of AIE Cu NCs/N-CDs from orange to blue, while Zn2+ can restore the orange fluorescence. The probe provided linear detection ranges of 0.5-170 μM for S2- and 0.05-200 μM for Zn2+, with detection limits of 0.17 μM and 0.02 μM, respectively. Moreover, a smartphone assistant ratiometric fluorescent test strips were developed for the rapid and visual detection of S2- and Zn2+. The AIE Cu NCs/N-CDs probe exhibited diverse fluorescence color responses, high fluorescence stability, and low cytotoxicity. The ratiometric system was successfully applied to the detection of S2- and Zn2+ in real water samples as well as in cellular and living imaging, demonstrating its potential in biochemical analysis and food safety monitoring.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.