应对健康老龄化:是时候阻止阿尔茨海默病上升的海啸。

IF 7 2区 医学 Q1 GERIATRICS & GERONTOLOGY Aging and Disease Pub Date : 2025-01-08 DOI:10.14336/AD.2024.1476
Nobel Chenggong Zong, Yuhan Zhang, Yuanli Huang, Hua Cai
{"title":"应对健康老龄化:是时候阻止阿尔茨海默病上升的海啸。","authors":"Nobel Chenggong Zong, Yuhan Zhang, Yuanli Huang, Hua Cai","doi":"10.14336/AD.2024.1476","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease [AD] disproportionately affects our seniors, diminishing their health and life expectancy. As the world population grows older, the collective burden of AD has become unsustainable. Globally, there were 43.8 million patients in 2016, with a projection of affecting 152 million by 2050. Recent discoveries have shown that molecular changes characteristic to AD manifested 20 years before discernable neurological phenotypes emerge. It is feasible to halt or reverse this pathological process before reaching an irremediable stage. To take advantage of this treatment window, we need to make rapid progress in early detection and monitoring, targeted implementation of preventative measures, invention of novel therapeutics, and pragmatic ramping-up of relevant supporting policies. PET is a powerful tool for prognosis. The utilization of AI technology, on the other hand, has favorable features of low cost per capita, easy dissemination and broad scale data collection to uncover previously unknown hotspots or risk factors. FDA approved drugs, lecanemab and donanemab, have started to show efficacy to put a pause on AD progression. Additional clinical data will enable comprehensive evaluation of the impacts of these drugs. Gene therapy holds the potential of eliciting long term protection, while several candidate loci have been identified. The urgency of a tsunami of rising AD epidemiology demands rapid actions on all fronts of advanced diagnostics, monitoring, preventative and interventive strategies.</p>","PeriodicalId":7434,"journal":{"name":"Aging and Disease","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing Healthy Aging: Time to Stop a Tsunami of Rising Alzheimer's Disease.\",\"authors\":\"Nobel Chenggong Zong, Yuhan Zhang, Yuanli Huang, Hua Cai\",\"doi\":\"10.14336/AD.2024.1476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease [AD] disproportionately affects our seniors, diminishing their health and life expectancy. As the world population grows older, the collective burden of AD has become unsustainable. Globally, there were 43.8 million patients in 2016, with a projection of affecting 152 million by 2050. Recent discoveries have shown that molecular changes characteristic to AD manifested 20 years before discernable neurological phenotypes emerge. It is feasible to halt or reverse this pathological process before reaching an irremediable stage. To take advantage of this treatment window, we need to make rapid progress in early detection and monitoring, targeted implementation of preventative measures, invention of novel therapeutics, and pragmatic ramping-up of relevant supporting policies. PET is a powerful tool for prognosis. The utilization of AI technology, on the other hand, has favorable features of low cost per capita, easy dissemination and broad scale data collection to uncover previously unknown hotspots or risk factors. FDA approved drugs, lecanemab and donanemab, have started to show efficacy to put a pause on AD progression. Additional clinical data will enable comprehensive evaluation of the impacts of these drugs. Gene therapy holds the potential of eliciting long term protection, while several candidate loci have been identified. The urgency of a tsunami of rising AD epidemiology demands rapid actions on all fronts of advanced diagnostics, monitoring, preventative and interventive strategies.</p>\",\"PeriodicalId\":7434,\"journal\":{\"name\":\"Aging and Disease\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14336/AD.2024.1476\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14336/AD.2024.1476","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)对老年人的影响尤为严重,削弱了他们的健康和预期寿命。随着世界人口老龄化,阿尔茨海默病的集体负担已变得不可持续。2016年,全球有4380万患者,预计到2050年将影响1.52亿人。最近的发现表明,阿尔茨海默病的分子特征变化在可识别的神经表型出现前20年就表现出来了。在达到不可补救的阶段之前,停止或逆转这种病理过程是可行的。为了利用这一治疗窗口期,我们需要在早期发现和监测、有针对性地实施预防措施、发明新的治疗方法以及切实加强相关支持政策方面取得快速进展。PET是一种强有力的预后工具。另一方面,人工智能技术的利用具有人均成本低、易于传播、数据收集规模大等有利特点,可以发现以前未知的热点或风险因素。FDA批准的药物lecanemab和donanemab已经开始显示出延缓AD进展的功效。更多的临床数据将有助于对这些药物的影响进行全面评估。基因治疗具有引发长期保护的潜力,同时已经确定了几个候选基因座。阿尔茨海默病流行病学不断上升的海啸的紧迫性要求在先进诊断、监测、预防和干预战略的所有方面迅速采取行动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Addressing Healthy Aging: Time to Stop a Tsunami of Rising Alzheimer's Disease.

Alzheimer's disease [AD] disproportionately affects our seniors, diminishing their health and life expectancy. As the world population grows older, the collective burden of AD has become unsustainable. Globally, there were 43.8 million patients in 2016, with a projection of affecting 152 million by 2050. Recent discoveries have shown that molecular changes characteristic to AD manifested 20 years before discernable neurological phenotypes emerge. It is feasible to halt or reverse this pathological process before reaching an irremediable stage. To take advantage of this treatment window, we need to make rapid progress in early detection and monitoring, targeted implementation of preventative measures, invention of novel therapeutics, and pragmatic ramping-up of relevant supporting policies. PET is a powerful tool for prognosis. The utilization of AI technology, on the other hand, has favorable features of low cost per capita, easy dissemination and broad scale data collection to uncover previously unknown hotspots or risk factors. FDA approved drugs, lecanemab and donanemab, have started to show efficacy to put a pause on AD progression. Additional clinical data will enable comprehensive evaluation of the impacts of these drugs. Gene therapy holds the potential of eliciting long term protection, while several candidate loci have been identified. The urgency of a tsunami of rising AD epidemiology demands rapid actions on all fronts of advanced diagnostics, monitoring, preventative and interventive strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aging and Disease
Aging and Disease GERIATRICS & GERONTOLOGY-
CiteScore
14.60
自引率
2.70%
发文量
138
审稿时长
10 weeks
期刊介绍: Aging & Disease (A&D) is an open-access online journal dedicated to publishing groundbreaking research on the biology of aging, the pathophysiology of age-related diseases, and innovative therapies for conditions affecting the elderly. The scope encompasses various diseases such as Stroke, Alzheimer's disease, Parkinson’s disease, Epilepsy, Dementia, Depression, Cardiovascular Disease, Cancer, Arthritis, Cataract, Osteoporosis, Diabetes, and Hypertension. The journal welcomes studies involving animal models as well as human tissues or cells.
期刊最新文献
Deformability of Heterogeneous Red Blood Cells in Aging and Related Pathologies. NR1D1 Inhibition Enhances Autophagy and Mitophagy in Alzheimer's Disease Models. Chronic Cerebral Deterioration - A Comprehensive View of Old-Age Cerebral Deterioration. Physical Prehabilitation for Older Patients with Cancer before Complex Medical-Surgical Interventions: An Umbrella Review. Pros and Cons of Human Brain Organoids to Study Alzheimer's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1