多巴酚丁胺发作时主动脉瓣血流动力学反应及进行性主动脉束带。

IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS American journal of physiology. Heart and circulatory physiology Pub Date : 2025-02-01 Epub Date: 2025-01-15 DOI:10.1152/ajpheart.00616.2024
Rob Eerdekens, Philipos K Gebremedhin, Daniel T Johnson, Richard L Kirkeeide, Gretchen L Howe, Richard W Smalling, K Lance Gould, Pim A L Tonino, Nils P Johnson
{"title":"多巴酚丁胺发作时主动脉瓣血流动力学反应及进行性主动脉束带。","authors":"Rob Eerdekens, Philipos K Gebremedhin, Daniel T Johnson, Richard L Kirkeeide, Gretchen L Howe, Richard W Smalling, K Lance Gould, Pim A L Tonino, Nils P Johnson","doi":"10.1152/ajpheart.00616.2024","DOIUrl":null,"url":null,"abstract":"<p><p>An increasing number of procedures over the past two decades for aortic stenosis (AS) reflects the combination of an aging population and less invasive transcatheter options. As a result, the hemodynamics of the aortic valve (AV) have gained renewed interest to understand its behavior and to optimize patient selection. We studied the hemodynamic relationship between pressure loss (ΔP) and transvalvular flow (Q) of the normal AV as well as the impact of a variable supravalvular stenosis. Our mechanistic study included 11 healthy swine monitored during dobutamine stress and followed by acute aortic banding to simulate AS. Hemodynamics were continuously recorded, and transvalvular ΔP versus Q were analyzed using proportional and linear models. During dobutamine infusion, normal valves exhibited a highly linear relationship between ΔP and Q (median <i>R</i><sup>2</sup> of 0.93). Progressive aortic banding eventually displayed a highly linear relationship between an increasing ΔP and the decreasing Q, characterized by a constant systemic circulatory resistance (median <i>R</i><sup>2</sup> of 0.91). Consequently, a normal AV can be described by a single parameter: its resistance, median 0.37 Wood units (WU) in swine. During dobutamine stress and aortic banding, the systemic bed behaves like a constant and stable resistance, median of 11.9 WU in swine. These findings carry significant implications for quantifying normal and diseased AV behavior and potentially might improve patient selection and treatment outcomes.<b>NEW & NOTEWORTHY</b> This study demonstrates that the normal aortic valve functions like a resistor with a proportional pressure loss ΔP versus transvalvular flow Q relationship. During dobutamine stress and progressive aortic banding, a \"load line\" of constant resistance characterizes the systemic circulation. Consequently, during stress conditions, the relative pressure loss over a stenotic aortic valve (the stress aortic valve index, SAVI) quantifies the relative reduction in maximal flow. Potentially, SAVI might optimize patient selection for procedures to treat aortic stenosis.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H377-H385"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hemodynamic response of the aortic valve during dobutamine onset then progressive aortic banding.\",\"authors\":\"Rob Eerdekens, Philipos K Gebremedhin, Daniel T Johnson, Richard L Kirkeeide, Gretchen L Howe, Richard W Smalling, K Lance Gould, Pim A L Tonino, Nils P Johnson\",\"doi\":\"10.1152/ajpheart.00616.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An increasing number of procedures over the past two decades for aortic stenosis (AS) reflects the combination of an aging population and less invasive transcatheter options. As a result, the hemodynamics of the aortic valve (AV) have gained renewed interest to understand its behavior and to optimize patient selection. We studied the hemodynamic relationship between pressure loss (ΔP) and transvalvular flow (Q) of the normal AV as well as the impact of a variable supravalvular stenosis. Our mechanistic study included 11 healthy swine monitored during dobutamine stress and followed by acute aortic banding to simulate AS. Hemodynamics were continuously recorded, and transvalvular ΔP versus Q were analyzed using proportional and linear models. During dobutamine infusion, normal valves exhibited a highly linear relationship between ΔP and Q (median <i>R</i><sup>2</sup> of 0.93). Progressive aortic banding eventually displayed a highly linear relationship between an increasing ΔP and the decreasing Q, characterized by a constant systemic circulatory resistance (median <i>R</i><sup>2</sup> of 0.91). Consequently, a normal AV can be described by a single parameter: its resistance, median 0.37 Wood units (WU) in swine. During dobutamine stress and aortic banding, the systemic bed behaves like a constant and stable resistance, median of 11.9 WU in swine. These findings carry significant implications for quantifying normal and diseased AV behavior and potentially might improve patient selection and treatment outcomes.<b>NEW & NOTEWORTHY</b> This study demonstrates that the normal aortic valve functions like a resistor with a proportional pressure loss ΔP versus transvalvular flow Q relationship. During dobutamine stress and progressive aortic banding, a \\\"load line\\\" of constant resistance characterizes the systemic circulation. Consequently, during stress conditions, the relative pressure loss over a stenotic aortic valve (the stress aortic valve index, SAVI) quantifies the relative reduction in maximal flow. Potentially, SAVI might optimize patient selection for procedures to treat aortic stenosis.</p>\",\"PeriodicalId\":7692,\"journal\":{\"name\":\"American journal of physiology. Heart and circulatory physiology\",\"volume\":\" \",\"pages\":\"H377-H385\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Heart and circulatory physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpheart.00616.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00616.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年中,越来越多的手术治疗主动脉瓣狭窄(AS)反映了人口老龄化和微创经导管选择的结合。因此,主动脉瓣(AV)的血流动力学重新引起了人们的兴趣,以了解其行为并优化患者选择。我们研究了正常房室压力损失(ΔP)与经瓣血流(Q)之间的血流动力学关系,以及可变瓣上狭窄的影响。我们的机制研究包括11头健康猪,在多巴酚丁胺应激期间进行监测,随后进行急性主动脉束带模拟AS。连续记录血流动力学,并使用比例和线性模型分析经瓣ΔP与Q的关系。多巴酚丁胺输注期间,正常瓣膜ΔP与Q呈高度线性关系(中位R2为0.93)。进行性主动脉束带最终显示出ΔP升高与Q降低之间的高度线性关系,其特征是系统循环阻力恒定(中位R2为0.91)。因此,一个正常的AV可以用一个参数来描述:它的阻力,猪的中位数为0.37木单位[WU]。在多巴酚丁胺应激和主动脉束带期间,系统床表现为持续稳定的抵抗,猪的中位数为11.9 WU。这些发现对量化正常和病变的AV行为具有重要意义,并可能改善患者的选择和治疗结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hemodynamic response of the aortic valve during dobutamine onset then progressive aortic banding.

An increasing number of procedures over the past two decades for aortic stenosis (AS) reflects the combination of an aging population and less invasive transcatheter options. As a result, the hemodynamics of the aortic valve (AV) have gained renewed interest to understand its behavior and to optimize patient selection. We studied the hemodynamic relationship between pressure loss (ΔP) and transvalvular flow (Q) of the normal AV as well as the impact of a variable supravalvular stenosis. Our mechanistic study included 11 healthy swine monitored during dobutamine stress and followed by acute aortic banding to simulate AS. Hemodynamics were continuously recorded, and transvalvular ΔP versus Q were analyzed using proportional and linear models. During dobutamine infusion, normal valves exhibited a highly linear relationship between ΔP and Q (median R2 of 0.93). Progressive aortic banding eventually displayed a highly linear relationship between an increasing ΔP and the decreasing Q, characterized by a constant systemic circulatory resistance (median R2 of 0.91). Consequently, a normal AV can be described by a single parameter: its resistance, median 0.37 Wood units (WU) in swine. During dobutamine stress and aortic banding, the systemic bed behaves like a constant and stable resistance, median of 11.9 WU in swine. These findings carry significant implications for quantifying normal and diseased AV behavior and potentially might improve patient selection and treatment outcomes.NEW & NOTEWORTHY This study demonstrates that the normal aortic valve functions like a resistor with a proportional pressure loss ΔP versus transvalvular flow Q relationship. During dobutamine stress and progressive aortic banding, a "load line" of constant resistance characterizes the systemic circulation. Consequently, during stress conditions, the relative pressure loss over a stenotic aortic valve (the stress aortic valve index, SAVI) quantifies the relative reduction in maximal flow. Potentially, SAVI might optimize patient selection for procedures to treat aortic stenosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
202
审稿时长
2-4 weeks
期刊介绍: The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.
期刊最新文献
High variability in the reproducibility of key hemodynamic responses to head-up tilt. Long-term hemodynamic responses and reverse remodeling after pharmacotherapy in HFpEF versus HFrEF: a systematic review and meta-analysis. Maternal cardiovascular research and education should be prioritized in the United States. Structural and functional remodeling for elite cyclists during exercise; pressure-volume loops and hemodynamic forces analysis. Comprehensive echocardiographic protocol for pigs with emphasis on diastolic function: advantages over MRI assessment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1