外周单核细胞TREM-1浸润介导帕金森病模型小鼠黑质多巴胺能神经元损伤。

IF 8.1 1区 生物学 Q1 CELL BIOLOGY Cell Death & Disease Pub Date : 2025-01-14 DOI:10.1038/s41419-025-07333-5
Wei Song, Zi-Ming Zhou, Le-le Zhang, Hai-Feng Shu, Jin-Ru Xia, Xia Qin, Rong Hua, Yong-Mei Zhang
{"title":"外周单核细胞TREM-1浸润介导帕金森病模型小鼠黑质多巴胺能神经元损伤。","authors":"Wei Song, Zi-Ming Zhou, Le-le Zhang, Hai-Feng Shu, Jin-Ru Xia, Xia Qin, Rong Hua, Yong-Mei Zhang","doi":"10.1038/s41419-025-07333-5","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroinflammation is a key factor in the pathogenesis of Parkinson's disease (PD). Activated microglia in the central nervous system (CNS) and infiltration of peripheral immune cells contribute to dopaminergic neuron loss. However, the role of peripheral immune responses, particularly triggering receptor expressed on myeloid cells-1 (TREM-1), in PD remains unclear. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced PD mouse model, we examined TREM-1 expression and monocyte infiltration in the substantia nigra pars compacta (SNpc). We found that MPTP increased peripheral monocytes, and deletion of peripheral monocytes protected against MPTP neurotoxicity in the SNpc. TREM-1 inhibition, both genetically and pharmacologically, reduced monocyte infiltration, alleviated neuroinflammation, and preserved dopaminergic neurons, resulting in improved motor function. Furthermore, adoptive transfer of TREM-1-expressing monocytes from PD model mice to naive mice induced neuronal damage and motor deficits. These results underscore the critical role of peripheral monocytes and TREM-1 in PD progression, suggesting that targeting TREM-1 could be a promising therapeutic approach to prevent dopaminergic neurodegeneration and motor dysfunction in PD. Schematic diagram of monocyte TREM-1-mediated dopaminergic neuron damage. The figure illustrates that in experimental MPTP-induced PD model mice, the number of inflammatory monocytes in the peripheral blood increases, after which the monocytes infiltrate the CNS through the Blood-Brain Barrier(BBB). These infiltrating monocytes increase the release of inflammatory cytokines and eventually cause neuronal injury. TREM-1 gene deletion and pharmacological blockade limit inflammatory monocyte recruitment into the SNpc and ameliorate neuroinflammatory events and the loss of dopaminergic neurons.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"18"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733277/pdf/","citationCount":"0","resultStr":"{\"title\":\"Infiltrating peripheral monocyte TREM-1 mediates dopaminergic neuron injury in substantia nigra of Parkinson's disease model mice.\",\"authors\":\"Wei Song, Zi-Ming Zhou, Le-le Zhang, Hai-Feng Shu, Jin-Ru Xia, Xia Qin, Rong Hua, Yong-Mei Zhang\",\"doi\":\"10.1038/s41419-025-07333-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroinflammation is a key factor in the pathogenesis of Parkinson's disease (PD). Activated microglia in the central nervous system (CNS) and infiltration of peripheral immune cells contribute to dopaminergic neuron loss. However, the role of peripheral immune responses, particularly triggering receptor expressed on myeloid cells-1 (TREM-1), in PD remains unclear. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced PD mouse model, we examined TREM-1 expression and monocyte infiltration in the substantia nigra pars compacta (SNpc). We found that MPTP increased peripheral monocytes, and deletion of peripheral monocytes protected against MPTP neurotoxicity in the SNpc. TREM-1 inhibition, both genetically and pharmacologically, reduced monocyte infiltration, alleviated neuroinflammation, and preserved dopaminergic neurons, resulting in improved motor function. Furthermore, adoptive transfer of TREM-1-expressing monocytes from PD model mice to naive mice induced neuronal damage and motor deficits. These results underscore the critical role of peripheral monocytes and TREM-1 in PD progression, suggesting that targeting TREM-1 could be a promising therapeutic approach to prevent dopaminergic neurodegeneration and motor dysfunction in PD. Schematic diagram of monocyte TREM-1-mediated dopaminergic neuron damage. The figure illustrates that in experimental MPTP-induced PD model mice, the number of inflammatory monocytes in the peripheral blood increases, after which the monocytes infiltrate the CNS through the Blood-Brain Barrier(BBB). These infiltrating monocytes increase the release of inflammatory cytokines and eventually cause neuronal injury. TREM-1 gene deletion and pharmacological blockade limit inflammatory monocyte recruitment into the SNpc and ameliorate neuroinflammatory events and the loss of dopaminergic neurons.</p>\",\"PeriodicalId\":9734,\"journal\":{\"name\":\"Cell Death & Disease\",\"volume\":\"16 1\",\"pages\":\"18\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733277/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death & Disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41419-025-07333-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07333-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经炎症是帕金森病(PD)发病的关键因素。中枢神经系统(CNS)中活化的小胶质细胞和外周免疫细胞的浸润有助于多巴胺能神经元的丧失。然而,外周免疫反应,特别是髓系细胞上表达的触发受体-1 (TREM-1)在PD中的作用尚不清楚。采用1-甲基-4-苯基-1,2,3,6-盐酸四氢吡啶(MPTP)诱导的PD小鼠模型,我们检测了TREM-1在黑质致密部(SNpc)中的表达和单核细胞浸润。我们发现MPTP增加了外周单核细胞,而外周单核细胞的缺失可以保护SNpc免受MPTP的神经毒性。从遗传和药理学角度来看,TREM-1抑制减少了单核细胞浸润,减轻了神经炎症,保存了多巴胺能神经元,从而改善了运动功能。此外,将表达trem -1的单核细胞从PD模型小鼠过继转移到幼稚小鼠身上,可引起神经元损伤和运动缺陷。这些结果强调了外周单核细胞和TREM-1在PD进展中的关键作用,表明靶向TREM-1可能是预防PD患者多巴胺能神经变性和运动功能障碍的一种有希望的治疗方法。单核细胞trem -1介导的多巴胺能神经元损伤示意图。由图可知,mptp诱导的PD模型小鼠外周血炎性单核细胞数量增加,单核细胞通过血脑屏障(BBB)浸润中枢神经系统。这些浸润的单核细胞增加了炎性细胞因子的释放,最终导致神经元损伤。TREM-1基因缺失和药物阻断限制炎症单核细胞募集到SNpc,改善神经炎症事件和多巴胺能神经元的损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Infiltrating peripheral monocyte TREM-1 mediates dopaminergic neuron injury in substantia nigra of Parkinson's disease model mice.

Neuroinflammation is a key factor in the pathogenesis of Parkinson's disease (PD). Activated microglia in the central nervous system (CNS) and infiltration of peripheral immune cells contribute to dopaminergic neuron loss. However, the role of peripheral immune responses, particularly triggering receptor expressed on myeloid cells-1 (TREM-1), in PD remains unclear. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced PD mouse model, we examined TREM-1 expression and monocyte infiltration in the substantia nigra pars compacta (SNpc). We found that MPTP increased peripheral monocytes, and deletion of peripheral monocytes protected against MPTP neurotoxicity in the SNpc. TREM-1 inhibition, both genetically and pharmacologically, reduced monocyte infiltration, alleviated neuroinflammation, and preserved dopaminergic neurons, resulting in improved motor function. Furthermore, adoptive transfer of TREM-1-expressing monocytes from PD model mice to naive mice induced neuronal damage and motor deficits. These results underscore the critical role of peripheral monocytes and TREM-1 in PD progression, suggesting that targeting TREM-1 could be a promising therapeutic approach to prevent dopaminergic neurodegeneration and motor dysfunction in PD. Schematic diagram of monocyte TREM-1-mediated dopaminergic neuron damage. The figure illustrates that in experimental MPTP-induced PD model mice, the number of inflammatory monocytes in the peripheral blood increases, after which the monocytes infiltrate the CNS through the Blood-Brain Barrier(BBB). These infiltrating monocytes increase the release of inflammatory cytokines and eventually cause neuronal injury. TREM-1 gene deletion and pharmacological blockade limit inflammatory monocyte recruitment into the SNpc and ameliorate neuroinflammatory events and the loss of dopaminergic neurons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
期刊最新文献
MAPK4 inhibits the early aberrant activation of B cells in rheumatoid arthritis by promoting the IRF4-SHIP1 signaling pathway. ZBP1-mediated PANoptosis is a crucial lethal form in diverse keratinocyte death modalities in UVB-induced skin injury. Ferroptosis triggers mitochondrial fragmentation via Drp1 activation. Positive feedback loop involving AMPK and CLYBL acetylation links metabolic rewiring and inflammatory responses. RNAi-based ALOX15B silencing augments keratinocyte inflammation in vitro via EGFR/STAT1/JAK1 signalling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1