{"title":"culicifacies按蚊SGU蛋白作为传播阻断活性靶点的分子特征和生物信息学分析。","authors":"Hitesh Singh, Manisha Kirar, Mahima Yadav, Nisha Dahiya, Sangeeta Janjoter, Neelam Sehrawat","doi":"10.1007/s12026-024-09561-x","DOIUrl":null,"url":null,"abstract":"<p><p>In tropical countries, malaria transmission is the major health issue. To eradicate malaria, health communities depend on the control measure that affects economy and environment of the countries. To overcome these burdens, there is a great need to develop vaccine against malaria, but there is no vaccine to control malaria effectively. Transmission blocking vaccine (TBV) is the best alternative approach to control malaria, which inhibits the malaria transmission. Mosquito-based TBVs, blocks the transmission of Plasmodium developmental stages in mosquito. There are some potential candidate antigens for mosquito-based TBV, e.g., AgCPB1, AnAPN1, AgFREP1, etc. AcSGU is one of the most potential candidates for TBVs. AcSGU protein is glycol-anchored protein in Anopheles culicifacies which is highly expressed after blood feeding. In the present study acsgu gene was amplified from genomic DNA, sequenced (GenBank id: MN402758) and characterised. The sequence of acsgu (gene and protein) was analysed by different immuno-informatics tools to confirm its potentiality as a candidate antigen. The target protein was cloned, isolated and immunised for immunogenic response analysis. The acsgu gene is single exonic which encodes for AcSGU protein with single functional MBF2 domain. It is conserved in most of the Anopheles species. Bioinformatics analysis confirmed the stability and immunogenic nature of the protein. Protein-Protein interaction revealed effective interaction of AcSGU with Pf47 and TLR4 molecules. AcSGU protein was expressed in E. coli BL21 (DE3) by using expression vector pLATE51. The immunogenic response in AcSGU protein was remarkable in the rabbit. This study confirmed that AcSGU protein is the potential candidate for transmission blocking vaccine to generate anti-midgut immunity against plasmodium. It can be used as a candidate for the development of multistage targeting vaccines against malaria.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":"73 1","pages":"34"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular characterization and bioinformatic analysis of SGU protein in Anopheles culicifacies as target for transmission blocking activity.\",\"authors\":\"Hitesh Singh, Manisha Kirar, Mahima Yadav, Nisha Dahiya, Sangeeta Janjoter, Neelam Sehrawat\",\"doi\":\"10.1007/s12026-024-09561-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In tropical countries, malaria transmission is the major health issue. To eradicate malaria, health communities depend on the control measure that affects economy and environment of the countries. To overcome these burdens, there is a great need to develop vaccine against malaria, but there is no vaccine to control malaria effectively. Transmission blocking vaccine (TBV) is the best alternative approach to control malaria, which inhibits the malaria transmission. Mosquito-based TBVs, blocks the transmission of Plasmodium developmental stages in mosquito. There are some potential candidate antigens for mosquito-based TBV, e.g., AgCPB1, AnAPN1, AgFREP1, etc. AcSGU is one of the most potential candidates for TBVs. AcSGU protein is glycol-anchored protein in Anopheles culicifacies which is highly expressed after blood feeding. In the present study acsgu gene was amplified from genomic DNA, sequenced (GenBank id: MN402758) and characterised. The sequence of acsgu (gene and protein) was analysed by different immuno-informatics tools to confirm its potentiality as a candidate antigen. The target protein was cloned, isolated and immunised for immunogenic response analysis. The acsgu gene is single exonic which encodes for AcSGU protein with single functional MBF2 domain. It is conserved in most of the Anopheles species. Bioinformatics analysis confirmed the stability and immunogenic nature of the protein. Protein-Protein interaction revealed effective interaction of AcSGU with Pf47 and TLR4 molecules. AcSGU protein was expressed in E. coli BL21 (DE3) by using expression vector pLATE51. The immunogenic response in AcSGU protein was remarkable in the rabbit. This study confirmed that AcSGU protein is the potential candidate for transmission blocking vaccine to generate anti-midgut immunity against plasmodium. It can be used as a candidate for the development of multistage targeting vaccines against malaria.</p>\",\"PeriodicalId\":13389,\"journal\":{\"name\":\"Immunologic Research\",\"volume\":\"73 1\",\"pages\":\"34\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunologic Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12026-024-09561-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunologic Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12026-024-09561-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Molecular characterization and bioinformatic analysis of SGU protein in Anopheles culicifacies as target for transmission blocking activity.
In tropical countries, malaria transmission is the major health issue. To eradicate malaria, health communities depend on the control measure that affects economy and environment of the countries. To overcome these burdens, there is a great need to develop vaccine against malaria, but there is no vaccine to control malaria effectively. Transmission blocking vaccine (TBV) is the best alternative approach to control malaria, which inhibits the malaria transmission. Mosquito-based TBVs, blocks the transmission of Plasmodium developmental stages in mosquito. There are some potential candidate antigens for mosquito-based TBV, e.g., AgCPB1, AnAPN1, AgFREP1, etc. AcSGU is one of the most potential candidates for TBVs. AcSGU protein is glycol-anchored protein in Anopheles culicifacies which is highly expressed after blood feeding. In the present study acsgu gene was amplified from genomic DNA, sequenced (GenBank id: MN402758) and characterised. The sequence of acsgu (gene and protein) was analysed by different immuno-informatics tools to confirm its potentiality as a candidate antigen. The target protein was cloned, isolated and immunised for immunogenic response analysis. The acsgu gene is single exonic which encodes for AcSGU protein with single functional MBF2 domain. It is conserved in most of the Anopheles species. Bioinformatics analysis confirmed the stability and immunogenic nature of the protein. Protein-Protein interaction revealed effective interaction of AcSGU with Pf47 and TLR4 molecules. AcSGU protein was expressed in E. coli BL21 (DE3) by using expression vector pLATE51. The immunogenic response in AcSGU protein was remarkable in the rabbit. This study confirmed that AcSGU protein is the potential candidate for transmission blocking vaccine to generate anti-midgut immunity against plasmodium. It can be used as a candidate for the development of multistage targeting vaccines against malaria.
期刊介绍:
IMMUNOLOGIC RESEARCH represents a unique medium for the presentation, interpretation, and clarification of complex scientific data. Information is presented in the form of interpretive synthesis reviews, original research articles, symposia, editorials, and theoretical essays. The scope of coverage extends to cellular immunology, immunogenetics, molecular and structural immunology, immunoregulation and autoimmunity, immunopathology, tumor immunology, host defense and microbial immunity, including viral immunology, immunohematology, mucosal immunity, complement, transplantation immunology, clinical immunology, neuroimmunology, immunoendocrinology, immunotoxicology, translational immunology, and history of immunology.