{"title":"一种基于双平面x线图像的混合深度学习框架,用于骨密度预测和分类。","authors":"Kun Zhou, Yuqi Zhu, Xiao Luo, Shan Yang, Enhui Xin, Yanwei Zeng, Junyan Fu, Zhuoying Ruan, Rong Wang, Liqin Yang, Daoying Geng","doi":"10.1007/s00198-024-07378-w","DOIUrl":null,"url":null,"abstract":"<p><p>This study utilized deep learning for bone mineral density (BMD) prediction and classification using biplanar X-ray radiography (BPX) images from Huashan Hospital Medical Checkup Center. Results showed high accuracy and strong correlation with quantitative computed tomography (QCT) results. The proposed models offer potential for screening patients at a high risk of osteoporosis and reducing unnecessary radiation and costs.</p><p><strong>Purpose: </strong>To explore the feasibility of using a hybrid deep learning framework (HDLF) to establish a model for BMD prediction and classification based on BPX images. This study aimed to establish an automated tool for screening patients at a high risk of osteoporosis.</p><p><strong>Methods: </strong>A total of 906 BPX scans from 453 subjects were included in this study, with QCT results serving as the reference standard. The training-validation set:independent test set ratio was 4:1. The L1-L3 vertebral bodies were manually annotated by experienced radiologists, and the HDLF was established to predict BMD and diagnose abnormality based on BPX images and clinical information. The performance metrics of the models were calculated and evaluated.</p><p><strong>Results: </strong>The <math> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </math> values of the BMD prediction regression model in the independent test set based on BPX images and multimodal data (BPX images and clinical information) were 0.77 and 0.79, respectively. The Pearson correlation coefficients were 0.88 and 0.89, respectively, with P-values < 0.001. Bland-Altman analysis revealed no significant difference between the predictions of the models and QCT results. The classification model achieved the highest AUC of 0.97 based on multimodal data in the independent test set, with an accuracy of 0.93, sensitivity of 0.84, specificity of 0.96, and F1 score of 0.93.</p><p><strong>Conclusion: </strong>This study demonstrates that deep learning neural networks applied to BPX images can accurately predict BMD and perform classification diagnoses, which can reduce the radiation risk, economic consumption, and time consumption associated with specialized BMD measurement.</p>","PeriodicalId":19638,"journal":{"name":"Osteoporosis International","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel hybrid deep learning framework based on biplanar X-ray radiography images for bone density prediction and classification.\",\"authors\":\"Kun Zhou, Yuqi Zhu, Xiao Luo, Shan Yang, Enhui Xin, Yanwei Zeng, Junyan Fu, Zhuoying Ruan, Rong Wang, Liqin Yang, Daoying Geng\",\"doi\":\"10.1007/s00198-024-07378-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study utilized deep learning for bone mineral density (BMD) prediction and classification using biplanar X-ray radiography (BPX) images from Huashan Hospital Medical Checkup Center. Results showed high accuracy and strong correlation with quantitative computed tomography (QCT) results. The proposed models offer potential for screening patients at a high risk of osteoporosis and reducing unnecessary radiation and costs.</p><p><strong>Purpose: </strong>To explore the feasibility of using a hybrid deep learning framework (HDLF) to establish a model for BMD prediction and classification based on BPX images. This study aimed to establish an automated tool for screening patients at a high risk of osteoporosis.</p><p><strong>Methods: </strong>A total of 906 BPX scans from 453 subjects were included in this study, with QCT results serving as the reference standard. The training-validation set:independent test set ratio was 4:1. The L1-L3 vertebral bodies were manually annotated by experienced radiologists, and the HDLF was established to predict BMD and diagnose abnormality based on BPX images and clinical information. The performance metrics of the models were calculated and evaluated.</p><p><strong>Results: </strong>The <math> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </math> values of the BMD prediction regression model in the independent test set based on BPX images and multimodal data (BPX images and clinical information) were 0.77 and 0.79, respectively. The Pearson correlation coefficients were 0.88 and 0.89, respectively, with P-values < 0.001. Bland-Altman analysis revealed no significant difference between the predictions of the models and QCT results. The classification model achieved the highest AUC of 0.97 based on multimodal data in the independent test set, with an accuracy of 0.93, sensitivity of 0.84, specificity of 0.96, and F1 score of 0.93.</p><p><strong>Conclusion: </strong>This study demonstrates that deep learning neural networks applied to BPX images can accurately predict BMD and perform classification diagnoses, which can reduce the radiation risk, economic consumption, and time consumption associated with specialized BMD measurement.</p>\",\"PeriodicalId\":19638,\"journal\":{\"name\":\"Osteoporosis International\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osteoporosis International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00198-024-07378-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osteoporosis International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00198-024-07378-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
A novel hybrid deep learning framework based on biplanar X-ray radiography images for bone density prediction and classification.
This study utilized deep learning for bone mineral density (BMD) prediction and classification using biplanar X-ray radiography (BPX) images from Huashan Hospital Medical Checkup Center. Results showed high accuracy and strong correlation with quantitative computed tomography (QCT) results. The proposed models offer potential for screening patients at a high risk of osteoporosis and reducing unnecessary radiation and costs.
Purpose: To explore the feasibility of using a hybrid deep learning framework (HDLF) to establish a model for BMD prediction and classification based on BPX images. This study aimed to establish an automated tool for screening patients at a high risk of osteoporosis.
Methods: A total of 906 BPX scans from 453 subjects were included in this study, with QCT results serving as the reference standard. The training-validation set:independent test set ratio was 4:1. The L1-L3 vertebral bodies were manually annotated by experienced radiologists, and the HDLF was established to predict BMD and diagnose abnormality based on BPX images and clinical information. The performance metrics of the models were calculated and evaluated.
Results: The values of the BMD prediction regression model in the independent test set based on BPX images and multimodal data (BPX images and clinical information) were 0.77 and 0.79, respectively. The Pearson correlation coefficients were 0.88 and 0.89, respectively, with P-values < 0.001. Bland-Altman analysis revealed no significant difference between the predictions of the models and QCT results. The classification model achieved the highest AUC of 0.97 based on multimodal data in the independent test set, with an accuracy of 0.93, sensitivity of 0.84, specificity of 0.96, and F1 score of 0.93.
Conclusion: This study demonstrates that deep learning neural networks applied to BPX images can accurately predict BMD and perform classification diagnoses, which can reduce the radiation risk, economic consumption, and time consumption associated with specialized BMD measurement.
期刊介绍:
An international multi-disciplinary journal which is a joint initiative between the International Osteoporosis Foundation and the National Osteoporosis Foundation of the USA, Osteoporosis International provides a forum for the communication and exchange of current ideas concerning the diagnosis, prevention, treatment and management of osteoporosis and other metabolic bone diseases.
It publishes: original papers - reporting progress and results in all areas of osteoporosis and its related fields; review articles - reflecting the present state of knowledge in special areas of summarizing limited themes in which discussion has led to clearly defined conclusions; educational articles - giving information on the progress of a topic of particular interest; case reports - of uncommon or interesting presentations of the condition.
While focusing on clinical research, the Journal will also accept submissions on more basic aspects of research, where they are considered by the editors to be relevant to the human disease spectrum.