{"title":"除草剂对RAW 264.7细胞的体外免疫毒性评价。","authors":"Larissa Vivan Cestonaro, Aline Mocellin Conte, Fernanda Capitanio Goldoni, Nara Lins Meira Quintão, Solange Cristina Garcia, José Roberto Santin, Marcelo Dutra Arbo","doi":"10.1080/15287394.2025.2450418","DOIUrl":null,"url":null,"abstract":"<p><p>Weeds are a concern in agriculture and the use of herbicides constitutes an effective, efficient, and economical way to control their growth. Recent discoveries of herbicides are promising for the management of resistant weeds. However, there is a gap in the knowledge of the toxic effects of some herbicides previously reported on immune cells. The present study aimed to examine cellular immunotoxicity of three herbicides (clomazone, glyphosate, and sulfentrazone) after 96 hr incubation utilizing RAW 264.7 BALB/c mouse monocyte/macrophage-like cell line to elucidate the role of some toxicological pathways. Data demonstrated the herbicides clomazone, glyphosate, and sulfentrazone initiated a cytotoxic effect as evidenced by EC<sub>50</sub> values of 429.2; 53.7; 866.6 mg/L, respectively. Clomazone and sulfentrazone, at all concentrations, induced excess production of reactive oxygen (ROS) and reactive nitrogen (RNS) free radicals. An immunosuppression was observed in RAW 264.7 cells after incubation with 50 or 100 mg/L glyphosate and 500 or 1000 mg/L sulfentrazone. In addition, all herbicides produced mitochondrial depolarization and decreased tumor necrosis factor-α (TNF-α) levels. This constitutes the first report of the effects of clomazone and sulfentrazone on RAW 264.7 cells, including reduced TNF-α levels, indicating the adverse influence of herbicides on the immune system.</p>","PeriodicalId":54758,"journal":{"name":"Journal of Toxicology and Environmental Health-Part A-Current Issues","volume":" ","pages":"1-14"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>In vitro</i> immunotoxic evaluation of herbicides in RAW 264.7 cells.\",\"authors\":\"Larissa Vivan Cestonaro, Aline Mocellin Conte, Fernanda Capitanio Goldoni, Nara Lins Meira Quintão, Solange Cristina Garcia, José Roberto Santin, Marcelo Dutra Arbo\",\"doi\":\"10.1080/15287394.2025.2450418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Weeds are a concern in agriculture and the use of herbicides constitutes an effective, efficient, and economical way to control their growth. Recent discoveries of herbicides are promising for the management of resistant weeds. However, there is a gap in the knowledge of the toxic effects of some herbicides previously reported on immune cells. The present study aimed to examine cellular immunotoxicity of three herbicides (clomazone, glyphosate, and sulfentrazone) after 96 hr incubation utilizing RAW 264.7 BALB/c mouse monocyte/macrophage-like cell line to elucidate the role of some toxicological pathways. Data demonstrated the herbicides clomazone, glyphosate, and sulfentrazone initiated a cytotoxic effect as evidenced by EC<sub>50</sub> values of 429.2; 53.7; 866.6 mg/L, respectively. Clomazone and sulfentrazone, at all concentrations, induced excess production of reactive oxygen (ROS) and reactive nitrogen (RNS) free radicals. An immunosuppression was observed in RAW 264.7 cells after incubation with 50 or 100 mg/L glyphosate and 500 or 1000 mg/L sulfentrazone. In addition, all herbicides produced mitochondrial depolarization and decreased tumor necrosis factor-α (TNF-α) levels. This constitutes the first report of the effects of clomazone and sulfentrazone on RAW 264.7 cells, including reduced TNF-α levels, indicating the adverse influence of herbicides on the immune system.</p>\",\"PeriodicalId\":54758,\"journal\":{\"name\":\"Journal of Toxicology and Environmental Health-Part A-Current Issues\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicology and Environmental Health-Part A-Current Issues\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15287394.2025.2450418\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health-Part A-Current Issues","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15287394.2025.2450418","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
In vitro immunotoxic evaluation of herbicides in RAW 264.7 cells.
Weeds are a concern in agriculture and the use of herbicides constitutes an effective, efficient, and economical way to control their growth. Recent discoveries of herbicides are promising for the management of resistant weeds. However, there is a gap in the knowledge of the toxic effects of some herbicides previously reported on immune cells. The present study aimed to examine cellular immunotoxicity of three herbicides (clomazone, glyphosate, and sulfentrazone) after 96 hr incubation utilizing RAW 264.7 BALB/c mouse monocyte/macrophage-like cell line to elucidate the role of some toxicological pathways. Data demonstrated the herbicides clomazone, glyphosate, and sulfentrazone initiated a cytotoxic effect as evidenced by EC50 values of 429.2; 53.7; 866.6 mg/L, respectively. Clomazone and sulfentrazone, at all concentrations, induced excess production of reactive oxygen (ROS) and reactive nitrogen (RNS) free radicals. An immunosuppression was observed in RAW 264.7 cells after incubation with 50 or 100 mg/L glyphosate and 500 or 1000 mg/L sulfentrazone. In addition, all herbicides produced mitochondrial depolarization and decreased tumor necrosis factor-α (TNF-α) levels. This constitutes the first report of the effects of clomazone and sulfentrazone on RAW 264.7 cells, including reduced TNF-α levels, indicating the adverse influence of herbicides on the immune system.
期刊介绍:
The Journal of Toxicology and Environmental Health, Part A , Current Issues is an authoritative journal that features strictly refereed original research in the field of environmental sciences, public and occupational health, and toxicology.