{"title":"深度学习揭示海拔对衰老的不同影响","authors":"Amanuel Abraha Teklu, Indra Heckenbach, Michael Angelo Petr, Daniela Bakula, Guido Keijzers, Morten Scheibye-Knudsen","doi":"10.1007/s11357-024-01502-8","DOIUrl":null,"url":null,"abstract":"<p>Aging is influenced by a complex interplay of multifarious factors, including an individual’s genetics, environment, and lifestyle. Notably, high altitude may impact aging and age-related diseases through exposures such as hypoxia and ultraviolet (UV) radiation. To investigate this, we mined risk exposure data (summary exposure value), disease burden data (disability-adjusted life years (DALYs)), and death rates and life expectancy from the Global Health Data Exchange (GHDx) and National Data Management Center for Health of Ethiopia for each subnational region of Ethiopia, a country with considerable differences in the living altitude. We conducted a cross-sectional clinical trial involving 227 highland and 202 lowland dwellers from the Tigray region in Northern Ethiopia to gain a general insight into the biological aging at high altitudes. Notably, we observed significantly lower risk exposure rates and a reduced disease burden as well as increased life expectancy by lower mortality rates in higher-altitude regions of Ethiopia. When assessing biological aging using facial photographs, we found a faster rate of aging with increasing elevation, likely due to greater UV exposure. Conversely, analysis of nuclear morphologies of peripheral blood mononuclear cells (PBMCs) in blood smears with five different senescence predictors revealed a significant decrease in DNA damage-induced senescence in both monocytes and lymphocytes with increasing elevation. Overall, our findings suggest that disease and DNA damage-induced senescence decreases with altitude in agreement with the idea that oxidative stress may drive aging.</p>","PeriodicalId":12730,"journal":{"name":"GeroScience","volume":"25 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning reveals diverging effects of altitude on aging\",\"authors\":\"Amanuel Abraha Teklu, Indra Heckenbach, Michael Angelo Petr, Daniela Bakula, Guido Keijzers, Morten Scheibye-Knudsen\",\"doi\":\"10.1007/s11357-024-01502-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aging is influenced by a complex interplay of multifarious factors, including an individual’s genetics, environment, and lifestyle. Notably, high altitude may impact aging and age-related diseases through exposures such as hypoxia and ultraviolet (UV) radiation. To investigate this, we mined risk exposure data (summary exposure value), disease burden data (disability-adjusted life years (DALYs)), and death rates and life expectancy from the Global Health Data Exchange (GHDx) and National Data Management Center for Health of Ethiopia for each subnational region of Ethiopia, a country with considerable differences in the living altitude. We conducted a cross-sectional clinical trial involving 227 highland and 202 lowland dwellers from the Tigray region in Northern Ethiopia to gain a general insight into the biological aging at high altitudes. Notably, we observed significantly lower risk exposure rates and a reduced disease burden as well as increased life expectancy by lower mortality rates in higher-altitude regions of Ethiopia. When assessing biological aging using facial photographs, we found a faster rate of aging with increasing elevation, likely due to greater UV exposure. Conversely, analysis of nuclear morphologies of peripheral blood mononuclear cells (PBMCs) in blood smears with five different senescence predictors revealed a significant decrease in DNA damage-induced senescence in both monocytes and lymphocytes with increasing elevation. Overall, our findings suggest that disease and DNA damage-induced senescence decreases with altitude in agreement with the idea that oxidative stress may drive aging.</p>\",\"PeriodicalId\":12730,\"journal\":{\"name\":\"GeroScience\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GeroScience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11357-024-01502-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeroScience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11357-024-01502-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Deep learning reveals diverging effects of altitude on aging
Aging is influenced by a complex interplay of multifarious factors, including an individual’s genetics, environment, and lifestyle. Notably, high altitude may impact aging and age-related diseases through exposures such as hypoxia and ultraviolet (UV) radiation. To investigate this, we mined risk exposure data (summary exposure value), disease burden data (disability-adjusted life years (DALYs)), and death rates and life expectancy from the Global Health Data Exchange (GHDx) and National Data Management Center for Health of Ethiopia for each subnational region of Ethiopia, a country with considerable differences in the living altitude. We conducted a cross-sectional clinical trial involving 227 highland and 202 lowland dwellers from the Tigray region in Northern Ethiopia to gain a general insight into the biological aging at high altitudes. Notably, we observed significantly lower risk exposure rates and a reduced disease burden as well as increased life expectancy by lower mortality rates in higher-altitude regions of Ethiopia. When assessing biological aging using facial photographs, we found a faster rate of aging with increasing elevation, likely due to greater UV exposure. Conversely, analysis of nuclear morphologies of peripheral blood mononuclear cells (PBMCs) in blood smears with five different senescence predictors revealed a significant decrease in DNA damage-induced senescence in both monocytes and lymphocytes with increasing elevation. Overall, our findings suggest that disease and DNA damage-induced senescence decreases with altitude in agreement with the idea that oxidative stress may drive aging.
GeroScienceMedicine-Complementary and Alternative Medicine
CiteScore
10.50
自引率
5.40%
发文量
182
期刊介绍:
GeroScience is a bi-monthly, international, peer-reviewed journal that publishes articles related to research in the biology of aging and research on biomedical applications that impact aging. The scope of articles to be considered include evolutionary biology, biophysics, genetics, genomics, proteomics, molecular biology, cell biology, biochemistry, endocrinology, immunology, physiology, pharmacology, neuroscience, and psychology.