{"title":"非定常不可压缩对流Brinkman-Forchheimer方程的鲁棒全局无发散弱Galerkin方法","authors":"Xiaojuan Wang, Jihong Xiao, Xiaoping Xie, Shiquan Zhang","doi":"10.1016/j.cnsns.2024.108578","DOIUrl":null,"url":null,"abstract":"This paper develops and analyzes a class of semi-discrete and fully discrete weak Galerkin finite element methods for unsteady incompressible convective Brinkman–Forchheimer equations. For the spatial discretization, the methods adopt the piecewise polynomials of degrees <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mi>m</mml:mi><mml:mspace width=\"1em\"></mml:mspace><mml:mrow><mml:mo>(</mml:mo><mml:mi>m</mml:mi><mml:mo>≥</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> and <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:mi>m</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> respectively to approximate the velocity and pressure inside the elements, and piecewise polynomials of degree <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mi>m</mml:mi></mml:math> to approximate their numerical traces on the interfaces of elements. In the fully discrete method, the backward Euler difference scheme is used to approximate the time derivative. The methods are shown to yield globally divergence-free velocity approximation. Optimal a priori error estimates in the energy norm and <mml:math altimg=\"si4.svg\" display=\"inline\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> norm are established. A convergent linearized iterative algorithm is designed for solving the fully discrete system. Numerical experiments are provided to verify the theoretical results.","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"54 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust globally divergence-free weak Galerkin methods for unsteady incompressible convective Brinkman–Forchheimer equations\",\"authors\":\"Xiaojuan Wang, Jihong Xiao, Xiaoping Xie, Shiquan Zhang\",\"doi\":\"10.1016/j.cnsns.2024.108578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops and analyzes a class of semi-discrete and fully discrete weak Galerkin finite element methods for unsteady incompressible convective Brinkman–Forchheimer equations. For the spatial discretization, the methods adopt the piecewise polynomials of degrees <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>m</mml:mi><mml:mspace width=\\\"1em\\\"></mml:mspace><mml:mrow><mml:mo>(</mml:mo><mml:mi>m</mml:mi><mml:mo>≥</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> and <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>m</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> respectively to approximate the velocity and pressure inside the elements, and piecewise polynomials of degree <mml:math altimg=\\\"si3.svg\\\" display=\\\"inline\\\"><mml:mi>m</mml:mi></mml:math> to approximate their numerical traces on the interfaces of elements. In the fully discrete method, the backward Euler difference scheme is used to approximate the time derivative. The methods are shown to yield globally divergence-free velocity approximation. Optimal a priori error estimates in the energy norm and <mml:math altimg=\\\"si4.svg\\\" display=\\\"inline\\\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> norm are established. A convergent linearized iterative algorithm is designed for solving the fully discrete system. Numerical experiments are provided to verify the theoretical results.\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cnsns.2024.108578\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.cnsns.2024.108578","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文开发并分析了一类针对非稳态不可压缩对流布林克曼-福克海默方程的半离散和全离散弱 Galerkin 有限元方法。在空间离散化方面,这些方法分别采用度数为 m(m≥1)和 m-1 的分片多项式来逼近元素内部的速度和压力,并采用度数为 m 的分片多项式来逼近元素界面上的数值迹线。在完全离散方法中,使用后向欧拉差分方案来近似时间导数。结果表明,这些方法可以得到全局无发散的速度近似值。建立了能量规范和 L2 规范的最佳先验误差估计。设计了一种收敛线性化迭代算法,用于求解完全离散系统。提供了数值实验来验证理论结果。
This paper develops and analyzes a class of semi-discrete and fully discrete weak Galerkin finite element methods for unsteady incompressible convective Brinkman–Forchheimer equations. For the spatial discretization, the methods adopt the piecewise polynomials of degrees m(m≥1) and m−1 respectively to approximate the velocity and pressure inside the elements, and piecewise polynomials of degree m to approximate their numerical traces on the interfaces of elements. In the fully discrete method, the backward Euler difference scheme is used to approximate the time derivative. The methods are shown to yield globally divergence-free velocity approximation. Optimal a priori error estimates in the energy norm and L2 norm are established. A convergent linearized iterative algorithm is designed for solving the fully discrete system. Numerical experiments are provided to verify the theoretical results.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.