具有多平台交叉传播机制的延迟离散SEIR负信息传播模型的全局动力学

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED Communications in Nonlinear Science and Numerical Simulation Pub Date : 2025-01-07 DOI:10.1016/j.cnsns.2025.108591
Yutao Yan, Shuzhen Yu, Zhiyong Yu, Haijun Jiang, Hui Wang
{"title":"具有多平台交叉传播机制的延迟离散SEIR负信息传播模型的全局动力学","authors":"Yutao Yan, Shuzhen Yu, Zhiyong Yu, Haijun Jiang, Hui Wang","doi":"10.1016/j.cnsns.2025.108591","DOIUrl":null,"url":null,"abstract":"Taking into account the phenomenon of cross-platform propagation of network information and multi-platform network environments, this paper constructs two discrete-time negative information propagation models with time delays. For the single platform model, we first prove that the information-free equilibrium (IFE) is locally asymptotically stable (LA-stable) and globally asymptotically stable (GA-stable) when <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:msub><mml:mrow><mml:mi>ℛ</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&lt;</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>. Then, by using the method of Lyapunov function, it is obtained that when <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:msub><mml:mrow><mml:mi>ℛ</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&gt;</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>, the information-spreading equilibrium (ISE) is GA-stable. For the multi-platform model, it is found that its dynamic behaviors are completely determined by the propagation threshold <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:msub><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>ℜ</mml:mi></mml:mrow><mml:mrow><mml:mo>ˆ</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub></mml:math>. To be specific, the IFE of the multi-platform model is GA-stable when <mml:math altimg=\"si4.svg\" display=\"inline\"><mml:mrow><mml:msub><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>ℜ</mml:mi></mml:mrow><mml:mrow><mml:mo>ˆ</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&lt;</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>. With respect to <mml:math altimg=\"si5.svg\" display=\"inline\"><mml:mrow><mml:msub><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>ℜ</mml:mi></mml:mrow><mml:mrow><mml:mo>ˆ</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&gt;</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>, it is proved that the ISE is GA-stable by using graph theory approach. The numerical experiments verify the accuracy of the conclusions. In the end, a real case is selected to illustrate the applicability of the model.","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"7 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global dynamics of delayed discrete-time SEIR negative information propagation model with multi-platform and cross-transmission mechanism\",\"authors\":\"Yutao Yan, Shuzhen Yu, Zhiyong Yu, Haijun Jiang, Hui Wang\",\"doi\":\"10.1016/j.cnsns.2025.108591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taking into account the phenomenon of cross-platform propagation of network information and multi-platform network environments, this paper constructs two discrete-time negative information propagation models with time delays. For the single platform model, we first prove that the information-free equilibrium (IFE) is locally asymptotically stable (LA-stable) and globally asymptotically stable (GA-stable) when <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:msub><mml:mrow><mml:mi>ℛ</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">&lt;</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>. Then, by using the method of Lyapunov function, it is obtained that when <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:msub><mml:mrow><mml:mi>ℛ</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">&gt;</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>, the information-spreading equilibrium (ISE) is GA-stable. For the multi-platform model, it is found that its dynamic behaviors are completely determined by the propagation threshold <mml:math altimg=\\\"si3.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>ℜ</mml:mi></mml:mrow><mml:mrow><mml:mo>ˆ</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub></mml:math>. To be specific, the IFE of the multi-platform model is GA-stable when <mml:math altimg=\\\"si4.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:msub><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>ℜ</mml:mi></mml:mrow><mml:mrow><mml:mo>ˆ</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">&lt;</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>. With respect to <mml:math altimg=\\\"si5.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:msub><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>ℜ</mml:mi></mml:mrow><mml:mrow><mml:mo>ˆ</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">&gt;</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>, it is proved that the ISE is GA-stable by using graph theory approach. The numerical experiments verify the accuracy of the conclusions. In the end, a real case is selected to illustrate the applicability of the model.\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cnsns.2025.108591\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.cnsns.2025.108591","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

考虑到网络信息的跨平台传播现象和多平台网络环境,本文构建了两个带时间延迟的离散时间负信息传播模型。对于单平台模型,首先证明当ℛ0<1 时,无信息均衡(IFE)是局部渐近稳定的(LA-stable),当ℛ0<1 时,信息传播均衡(ISE)是全局渐近稳定的(GA-stable)。对于多平台模型,其动态行为完全由传播阈值ℜˆ0决定。具体来说,当ℜˆ0<1时,多平台模型的IFE是GA稳定的;对于ℜˆ0>1,利用图论方法证明了ISE是GA稳定的。数值实验验证了结论的准确性。最后,选择了一个实际案例来说明模型的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Global dynamics of delayed discrete-time SEIR negative information propagation model with multi-platform and cross-transmission mechanism
Taking into account the phenomenon of cross-platform propagation of network information and multi-platform network environments, this paper constructs two discrete-time negative information propagation models with time delays. For the single platform model, we first prove that the information-free equilibrium (IFE) is locally asymptotically stable (LA-stable) and globally asymptotically stable (GA-stable) when 0<1. Then, by using the method of Lyapunov function, it is obtained that when 0>1, the information-spreading equilibrium (ISE) is GA-stable. For the multi-platform model, it is found that its dynamic behaviors are completely determined by the propagation threshold ˆ0. To be specific, the IFE of the multi-platform model is GA-stable when ˆ0<1. With respect to ˆ0>1, it is proved that the ISE is GA-stable by using graph theory approach. The numerical experiments verify the accuracy of the conclusions. In the end, a real case is selected to illustrate the applicability of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
期刊最新文献
Data-driven optimal prediction with control Observer-based sliding mode boundary control of uncertain Markovian stochastic reaction–diffusion systems Controllability analysis for impulsive multi-agent systems with switching effects Hidden Markov Model for correlated Ornstein–Uhlenbeck observations and application to gasoline prices forecasting A type of efficient multigrid method for semilinear parabolic interface problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1