基于引导扩散构建边界相同微结构的快速多尺度拓扑优化

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2025-01-14 DOI:10.1016/j.cma.2025.117735
Jingxuan Feng , Lili Wang , Xiaoya Zhai , Kai Chen , Wenming Wu , Ligang Liu , Xiao-Ming Fu
{"title":"基于引导扩散构建边界相同微结构的快速多尺度拓扑优化","authors":"Jingxuan Feng ,&nbsp;Lili Wang ,&nbsp;Xiaoya Zhai ,&nbsp;Kai Chen ,&nbsp;Wenming Wu ,&nbsp;Ligang Liu ,&nbsp;Xiao-Ming Fu","doi":"10.1016/j.cma.2025.117735","DOIUrl":null,"url":null,"abstract":"<div><div>Hierarchical structures exhibit critical features across multiple scales. However, designing multiscale structures demands significant computational resources, and ensuring connectivity between microstructures remains a key challenge. To address these issues, <em><strong>large-range, boundary-identical microstructure datasets</strong></em> are successfully constructed, where the microstructures share the same boundaries and exhibit a wide range of elastic moduli. This approach enables highly efficient multiscale topology optimization. Central to our technique adopts a deep generative model, guided diffusion, to generate microstructures under the two conditions, including the specified boundary and homogenized elastic tensor. We generate the desired datasets using active learning approaches, where microstructures with diverse elastic moduli are iteratively added to the dataset, which is then retrained. After that, sixteen boundary-identical microstructure datasets with wide ranges of elastic modulus are constructed. We demonstrate the effectiveness and practicability of the obtained datasets over various multiscale design examples. Specifically, in the design of a mechanical cloak, we utilize macrostructures with 30 × 30 elements and microstructures filled with 256 × 256 elements. The entire reverse design process is completed within one minute, significantly enhancing the efficiency of the multiscale topology optimization.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"436 ","pages":"Article 117735"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing boundary-identical microstructures via guided diffusion for fast multiscale topology optimization\",\"authors\":\"Jingxuan Feng ,&nbsp;Lili Wang ,&nbsp;Xiaoya Zhai ,&nbsp;Kai Chen ,&nbsp;Wenming Wu ,&nbsp;Ligang Liu ,&nbsp;Xiao-Ming Fu\",\"doi\":\"10.1016/j.cma.2025.117735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hierarchical structures exhibit critical features across multiple scales. However, designing multiscale structures demands significant computational resources, and ensuring connectivity between microstructures remains a key challenge. To address these issues, <em><strong>large-range, boundary-identical microstructure datasets</strong></em> are successfully constructed, where the microstructures share the same boundaries and exhibit a wide range of elastic moduli. This approach enables highly efficient multiscale topology optimization. Central to our technique adopts a deep generative model, guided diffusion, to generate microstructures under the two conditions, including the specified boundary and homogenized elastic tensor. We generate the desired datasets using active learning approaches, where microstructures with diverse elastic moduli are iteratively added to the dataset, which is then retrained. After that, sixteen boundary-identical microstructure datasets with wide ranges of elastic modulus are constructed. We demonstrate the effectiveness and practicability of the obtained datasets over various multiscale design examples. Specifically, in the design of a mechanical cloak, we utilize macrostructures with 30 × 30 elements and microstructures filled with 256 × 256 elements. The entire reverse design process is completed within one minute, significantly enhancing the efficiency of the multiscale topology optimization.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"436 \",\"pages\":\"Article 117735\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782525000076\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525000076","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

等级结构在多个尺度上表现出关键特征。然而,设计多尺度结构需要大量的计算资源,并且确保微观结构之间的连接仍然是一个关键挑战。为了解决这些问题,成功构建了大范围,边界相同的微观结构数据集,其中微观结构共享相同的边界并表现出大范围的弹性模量。该方法实现了高效的多尺度拓扑优化。我们技术的核心是采用一种深度生成模型,即引导扩散,在两种条件下生成微观结构,包括指定边界和均质弹性张量。我们使用主动学习方法生成所需的数据集,其中迭代地将具有不同弹性模量的微结构添加到数据集中,然后重新训练数据集。在此基础上,构建了16个弹性模量范围大、边界相同的微观结构数据集。我们通过各种多尺度设计实例证明了所获得的数据集的有效性和实用性。具体来说,在机械斗篷的设计中,我们使用了30 × 30单元的宏观结构和256 × 256单元的微观结构。整个反设计过程在1分钟内完成,大大提高了多尺度拓扑优化的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constructing boundary-identical microstructures via guided diffusion for fast multiscale topology optimization
Hierarchical structures exhibit critical features across multiple scales. However, designing multiscale structures demands significant computational resources, and ensuring connectivity between microstructures remains a key challenge. To address these issues, large-range, boundary-identical microstructure datasets are successfully constructed, where the microstructures share the same boundaries and exhibit a wide range of elastic moduli. This approach enables highly efficient multiscale topology optimization. Central to our technique adopts a deep generative model, guided diffusion, to generate microstructures under the two conditions, including the specified boundary and homogenized elastic tensor. We generate the desired datasets using active learning approaches, where microstructures with diverse elastic moduli are iteratively added to the dataset, which is then retrained. After that, sixteen boundary-identical microstructure datasets with wide ranges of elastic modulus are constructed. We demonstrate the effectiveness and practicability of the obtained datasets over various multiscale design examples. Specifically, in the design of a mechanical cloak, we utilize macrostructures with 30 × 30 elements and microstructures filled with 256 × 256 elements. The entire reverse design process is completed within one minute, significantly enhancing the efficiency of the multiscale topology optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
Simultaneous shape and topology optimization on unstructured grids Self-support structure topology optimization for multi-axis additive manufacturing incorporated with curved layer slicing Robust equilibrium optimization method for dynamic characteristics of mechanical structures with hybrid uncertainties Global-local adaptive meshing method for phase-field fracture modeling A high-order implicit time integration method for linear and nonlinear dynamics with efficient computation of accelerations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1