{"title":"用于时变平流扩散方程的 SUPG 稳定时间-DG 有限元和虚拟元","authors":"L. Beirão da Veiga , F. Dassi , S. Gómez","doi":"10.1016/j.cma.2024.117722","DOIUrl":null,"url":null,"abstract":"<div><div>We carry out a stability and convergence analysis for the fully discrete scheme obtained by combining a finite or virtual element spatial discretization with the upwind-discontinuous Galerkin time-stepping applied to the time-dependent advection–diffusion equation. A space–time streamline-upwind Petrov–Galerkin term is used to stabilize the method. More precisely, we show that the method is inf–sup stable with constant independent of the diffusion coefficient, which ensures the robustness of the method in the convection- and diffusion-dominated regimes. Moreover, we prove optimal convergence rates in both regimes for the error in the energy norm. An important feature of the presented analysis is the control in the full <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> norm without the need of introducing an artificial reaction term in the model. We finally present some numerical experiments in <span><math><mrow><mo>(</mo><mn>3</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensions that validate our theoretical results.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"436 ","pages":"Article 117722"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SUPG-stabilized time-DG finite and virtual elements for the time-dependent advection–diffusion equation\",\"authors\":\"L. Beirão da Veiga , F. Dassi , S. Gómez\",\"doi\":\"10.1016/j.cma.2024.117722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We carry out a stability and convergence analysis for the fully discrete scheme obtained by combining a finite or virtual element spatial discretization with the upwind-discontinuous Galerkin time-stepping applied to the time-dependent advection–diffusion equation. A space–time streamline-upwind Petrov–Galerkin term is used to stabilize the method. More precisely, we show that the method is inf–sup stable with constant independent of the diffusion coefficient, which ensures the robustness of the method in the convection- and diffusion-dominated regimes. Moreover, we prove optimal convergence rates in both regimes for the error in the energy norm. An important feature of the presented analysis is the control in the full <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> norm without the need of introducing an artificial reaction term in the model. We finally present some numerical experiments in <span><math><mrow><mo>(</mo><mn>3</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensions that validate our theoretical results.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"436 \",\"pages\":\"Article 117722\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524009782\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524009782","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
SUPG-stabilized time-DG finite and virtual elements for the time-dependent advection–diffusion equation
We carry out a stability and convergence analysis for the fully discrete scheme obtained by combining a finite or virtual element spatial discretization with the upwind-discontinuous Galerkin time-stepping applied to the time-dependent advection–diffusion equation. A space–time streamline-upwind Petrov–Galerkin term is used to stabilize the method. More precisely, we show that the method is inf–sup stable with constant independent of the diffusion coefficient, which ensures the robustness of the method in the convection- and diffusion-dominated regimes. Moreover, we prove optimal convergence rates in both regimes for the error in the energy norm. An important feature of the presented analysis is the control in the full norm without the need of introducing an artificial reaction term in the model. We finally present some numerical experiments in -dimensions that validate our theoretical results.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.