Diab W. Abueidda , Panos Pantidis , Mostafa E. Mobasher
{"title":"DeepOKAN:基于力学问题Kolmogorov Arnold网络的深度算子网络","authors":"Diab W. Abueidda , Panos Pantidis , Mostafa E. Mobasher","doi":"10.1016/j.cma.2024.117699","DOIUrl":null,"url":null,"abstract":"<div><div>The modern digital engineering design often requires costly repeated simulations for different scenarios. The prediction capability of neural networks (NNs) makes them suitable surrogates for providing design insights. However, only a few NNs can efficiently handle complex engineering scenario predictions. We introduce a new version of the neural operators called DeepOKAN, which utilizes Kolmogorov Arnold networks (KANs) rather than the conventional neural network architectures. Our DeepOKAN uses Gaussian radial basis functions (RBFs) rather than the B-splines. RBFs offer good approximation properties and are typically computationally fast. The KAN architecture, combined with RBFs, allows DeepOKANs to represent better intricate relationships between input parameters and output fields, resulting in more accurate predictions across various mechanics problems. Specifically, we evaluate DeepOKAN’s performance on several mechanics problems, including 1D sinusoidal waves, 2D orthotropic elasticity, and transient Poisson’s problem, consistently achieving lower training losses and more accurate predictions compared to traditional DeepONets. This approach should pave the way for further improving the performance of neural operators.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"436 ","pages":"Article 117699"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepOKAN: Deep operator network based on Kolmogorov Arnold networks for mechanics problems\",\"authors\":\"Diab W. Abueidda , Panos Pantidis , Mostafa E. Mobasher\",\"doi\":\"10.1016/j.cma.2024.117699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The modern digital engineering design often requires costly repeated simulations for different scenarios. The prediction capability of neural networks (NNs) makes them suitable surrogates for providing design insights. However, only a few NNs can efficiently handle complex engineering scenario predictions. We introduce a new version of the neural operators called DeepOKAN, which utilizes Kolmogorov Arnold networks (KANs) rather than the conventional neural network architectures. Our DeepOKAN uses Gaussian radial basis functions (RBFs) rather than the B-splines. RBFs offer good approximation properties and are typically computationally fast. The KAN architecture, combined with RBFs, allows DeepOKANs to represent better intricate relationships between input parameters and output fields, resulting in more accurate predictions across various mechanics problems. Specifically, we evaluate DeepOKAN’s performance on several mechanics problems, including 1D sinusoidal waves, 2D orthotropic elasticity, and transient Poisson’s problem, consistently achieving lower training losses and more accurate predictions compared to traditional DeepONets. This approach should pave the way for further improving the performance of neural operators.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"436 \",\"pages\":\"Article 117699\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524009538\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524009538","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
DeepOKAN: Deep operator network based on Kolmogorov Arnold networks for mechanics problems
The modern digital engineering design often requires costly repeated simulations for different scenarios. The prediction capability of neural networks (NNs) makes them suitable surrogates for providing design insights. However, only a few NNs can efficiently handle complex engineering scenario predictions. We introduce a new version of the neural operators called DeepOKAN, which utilizes Kolmogorov Arnold networks (KANs) rather than the conventional neural network architectures. Our DeepOKAN uses Gaussian radial basis functions (RBFs) rather than the B-splines. RBFs offer good approximation properties and are typically computationally fast. The KAN architecture, combined with RBFs, allows DeepOKANs to represent better intricate relationships between input parameters and output fields, resulting in more accurate predictions across various mechanics problems. Specifically, we evaluate DeepOKAN’s performance on several mechanics problems, including 1D sinusoidal waves, 2D orthotropic elasticity, and transient Poisson’s problem, consistently achieving lower training losses and more accurate predictions compared to traditional DeepONets. This approach should pave the way for further improving the performance of neural operators.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.