{"title":"面向图像绘制定位的密集特征交互网络","authors":"Ye Yao;Tingfeng Han;Shan Jia;Siwei Lyu","doi":"10.1109/TIFS.2025.3531103","DOIUrl":null,"url":null,"abstract":"Image inpainting, the process of filling in missing areas in an image, is a common image editing technique. Inpainting can be used to conceal or alter image contents in malicious manipulation of images, driving the need for research in image inpainting detection. Most existing methods use a basic encoder-decoder structure, which often results in a high number of false positives or misses the inpainted regions, especially when dealing with targets of varying semantics and scales. Additionally, the lack of an effective approach to capture boundary artifacts leads to less accurate edge localization. In this paper, we describe a new method for inpainting detection based on a Dense Feature Interaction Network (DeFI-Net). DeFI-Net uses a novel feature pyramid architecture to capture and amplify multi-scale representations across various stages, thereby improving the detection of image inpainting by better strengthening feature-level interactions. Additionally, the network can adaptively direct the lower-level features, which carry edge and shape information, to refine the localization of manipulated regions while integrating the higher-level semantic features. Using DeFI-Net, we develop a method combining complementary representations to accurately identify inpainted areas. Evaluation on seven image inpainting datasets demonstrates the effectiveness of our approach, which achieves state-of-the-art performance in detecting inpainting across diverse models. Code and models are available at <uri>https://github.com/Boombb/DeFI-Net_Inpainting</uri>.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"1636-1648"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dense Feature Interaction Network for Image Inpainting Localization\",\"authors\":\"Ye Yao;Tingfeng Han;Shan Jia;Siwei Lyu\",\"doi\":\"10.1109/TIFS.2025.3531103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image inpainting, the process of filling in missing areas in an image, is a common image editing technique. Inpainting can be used to conceal or alter image contents in malicious manipulation of images, driving the need for research in image inpainting detection. Most existing methods use a basic encoder-decoder structure, which often results in a high number of false positives or misses the inpainted regions, especially when dealing with targets of varying semantics and scales. Additionally, the lack of an effective approach to capture boundary artifacts leads to less accurate edge localization. In this paper, we describe a new method for inpainting detection based on a Dense Feature Interaction Network (DeFI-Net). DeFI-Net uses a novel feature pyramid architecture to capture and amplify multi-scale representations across various stages, thereby improving the detection of image inpainting by better strengthening feature-level interactions. Additionally, the network can adaptively direct the lower-level features, which carry edge and shape information, to refine the localization of manipulated regions while integrating the higher-level semantic features. Using DeFI-Net, we develop a method combining complementary representations to accurately identify inpainted areas. Evaluation on seven image inpainting datasets demonstrates the effectiveness of our approach, which achieves state-of-the-art performance in detecting inpainting across diverse models. Code and models are available at <uri>https://github.com/Boombb/DeFI-Net_Inpainting</uri>.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"1636-1648\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10844910/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10844910/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Dense Feature Interaction Network for Image Inpainting Localization
Image inpainting, the process of filling in missing areas in an image, is a common image editing technique. Inpainting can be used to conceal or alter image contents in malicious manipulation of images, driving the need for research in image inpainting detection. Most existing methods use a basic encoder-decoder structure, which often results in a high number of false positives or misses the inpainted regions, especially when dealing with targets of varying semantics and scales. Additionally, the lack of an effective approach to capture boundary artifacts leads to less accurate edge localization. In this paper, we describe a new method for inpainting detection based on a Dense Feature Interaction Network (DeFI-Net). DeFI-Net uses a novel feature pyramid architecture to capture and amplify multi-scale representations across various stages, thereby improving the detection of image inpainting by better strengthening feature-level interactions. Additionally, the network can adaptively direct the lower-level features, which carry edge and shape information, to refine the localization of manipulated regions while integrating the higher-level semantic features. Using DeFI-Net, we develop a method combining complementary representations to accurately identify inpainted areas. Evaluation on seven image inpainting datasets demonstrates the effectiveness of our approach, which achieves state-of-the-art performance in detecting inpainting across diverse models. Code and models are available at https://github.com/Boombb/DeFI-Net_Inpainting.
期刊介绍:
The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features