弹性约束多向fgm矩形平行六面体的三维动力学分析

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Mechanical Sciences Pub Date : 2025-01-13 DOI:10.1016/j.ijmecsci.2025.109950
Xiaochao Chen, Runbin Li, Chengcheng Chang, Lin Cheng
{"title":"弹性约束多向fgm矩形平行六面体的三维动力学分析","authors":"Xiaochao Chen, Runbin Li, Chengcheng Chang, Lin Cheng","doi":"10.1016/j.ijmecsci.2025.109950","DOIUrl":null,"url":null,"abstract":"In this research, the dynamic features of three-directional functionally graded materials (3DFGMs) rectangular parallelepiped with classic/elastic restraints are investigated based on 3D elastic theory. The general boundary conditions are implemented by introducing artificial displacement springs on the chosen surfaces of rectangular solid. The gradient materials are distributed along the two in-plane and thickness directions of parallelepiped. By setting boundary constraints and geometric parameters, the 3DFGMs rectangular parallelepiped can be evolved into slender beam, thick or thin plate, or even a cuboidal solid. Lagrangian energy functions are formulated for parallelepiped-spring system. The free vibration characters of 3DFGMs rectangular parallelepiped are solved employing the Ritz method in conjunction with the Jacobi polynomials. For transient analysis, the analytical expressions of impulse responses are derived for different types of pulsed excitation. The presented modeling and solution methods are validated by comparing with the results from open literature, finite element analysis and experimental results. Numerical simulations are performed to reveal the effect mechanisms of material gradients, geometrical configuration and boundary restraints on the vibration characters of 3DFGMs parallelepiped. The results demonstrate that dynamic performance of rectangular parallelepiped depends critically on material gradient which may be regarded as regulatory factor to regulate the modal displacement distribution or modal sequence.","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"14 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D dynamic analysis of elastically restrained multi-directional FGMs rectangular parallelepiped\",\"authors\":\"Xiaochao Chen, Runbin Li, Chengcheng Chang, Lin Cheng\",\"doi\":\"10.1016/j.ijmecsci.2025.109950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the dynamic features of three-directional functionally graded materials (3DFGMs) rectangular parallelepiped with classic/elastic restraints are investigated based on 3D elastic theory. The general boundary conditions are implemented by introducing artificial displacement springs on the chosen surfaces of rectangular solid. The gradient materials are distributed along the two in-plane and thickness directions of parallelepiped. By setting boundary constraints and geometric parameters, the 3DFGMs rectangular parallelepiped can be evolved into slender beam, thick or thin plate, or even a cuboidal solid. Lagrangian energy functions are formulated for parallelepiped-spring system. The free vibration characters of 3DFGMs rectangular parallelepiped are solved employing the Ritz method in conjunction with the Jacobi polynomials. For transient analysis, the analytical expressions of impulse responses are derived for different types of pulsed excitation. The presented modeling and solution methods are validated by comparing with the results from open literature, finite element analysis and experimental results. Numerical simulations are performed to reveal the effect mechanisms of material gradients, geometrical configuration and boundary restraints on the vibration characters of 3DFGMs parallelepiped. The results demonstrate that dynamic performance of rectangular parallelepiped depends critically on material gradient which may be regarded as regulatory factor to regulate the modal displacement distribution or modal sequence.\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijmecsci.2025.109950\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ijmecsci.2025.109950","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于三维弹性理论,研究了具有经典/弹性约束的三方向功能梯度材料(3dfgm)矩形平行六面体的动力学特性。通过在选定的矩形实体表面上引入人工位移弹簧,实现了一般边界条件。梯度材料沿平行六面体的面内方向和厚度方向分布。通过设置边界约束和几何参数,可以将三维fgm矩形平行六面体演化为细长梁、厚板或薄板,甚至是立方体实体。导出了平行六面体-弹簧系统的拉格朗日能量函数。采用Ritz法结合Jacobi多项式对三维fgm矩形平行六面体的自由振动特性进行了求解。在瞬态分析中,推导了不同类型脉冲激励下脉冲响应的解析表达式。通过与公开文献、有限元分析和实验结果的比较,验证了所提出的建模和求解方法的正确性。通过数值模拟揭示了材料梯度、几何形态和边界约束对三维fgm平行六面体振动特性的影响机理。结果表明,矩形平行六面体的动力性能主要取决于材料梯度,材料梯度可以作为调节因素来调节模态位移分布或模态序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D dynamic analysis of elastically restrained multi-directional FGMs rectangular parallelepiped
In this research, the dynamic features of three-directional functionally graded materials (3DFGMs) rectangular parallelepiped with classic/elastic restraints are investigated based on 3D elastic theory. The general boundary conditions are implemented by introducing artificial displacement springs on the chosen surfaces of rectangular solid. The gradient materials are distributed along the two in-plane and thickness directions of parallelepiped. By setting boundary constraints and geometric parameters, the 3DFGMs rectangular parallelepiped can be evolved into slender beam, thick or thin plate, or even a cuboidal solid. Lagrangian energy functions are formulated for parallelepiped-spring system. The free vibration characters of 3DFGMs rectangular parallelepiped are solved employing the Ritz method in conjunction with the Jacobi polynomials. For transient analysis, the analytical expressions of impulse responses are derived for different types of pulsed excitation. The presented modeling and solution methods are validated by comparing with the results from open literature, finite element analysis and experimental results. Numerical simulations are performed to reveal the effect mechanisms of material gradients, geometrical configuration and boundary restraints on the vibration characters of 3DFGMs parallelepiped. The results demonstrate that dynamic performance of rectangular parallelepiped depends critically on material gradient which may be regarded as regulatory factor to regulate the modal displacement distribution or modal sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
期刊最新文献
Vibration transmission in lubricated piston-liner systems: Experimental and multi-physics coupled analysis Modeling of CFRP hybrid lap joints via energy-based 2D framework Exploring deformation mechanisms in a refractory high entropy alloy (MoNbTaW) Vibration control in bolted joints with locally resonant metamaterials Unveiling self-propelled ascent in granular media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1