Xiaochao Chen, Runbin Li, Chengcheng Chang, Lin Cheng
{"title":"弹性约束多向fgm矩形平行六面体的三维动力学分析","authors":"Xiaochao Chen, Runbin Li, Chengcheng Chang, Lin Cheng","doi":"10.1016/j.ijmecsci.2025.109950","DOIUrl":null,"url":null,"abstract":"In this research, the dynamic features of three-directional functionally graded materials (3DFGMs) rectangular parallelepiped with classic/elastic restraints are investigated based on 3D elastic theory. The general boundary conditions are implemented by introducing artificial displacement springs on the chosen surfaces of rectangular solid. The gradient materials are distributed along the two in-plane and thickness directions of parallelepiped. By setting boundary constraints and geometric parameters, the 3DFGMs rectangular parallelepiped can be evolved into slender beam, thick or thin plate, or even a cuboidal solid. Lagrangian energy functions are formulated for parallelepiped-spring system. The free vibration characters of 3DFGMs rectangular parallelepiped are solved employing the Ritz method in conjunction with the Jacobi polynomials. For transient analysis, the analytical expressions of impulse responses are derived for different types of pulsed excitation. The presented modeling and solution methods are validated by comparing with the results from open literature, finite element analysis and experimental results. Numerical simulations are performed to reveal the effect mechanisms of material gradients, geometrical configuration and boundary restraints on the vibration characters of 3DFGMs parallelepiped. The results demonstrate that dynamic performance of rectangular parallelepiped depends critically on material gradient which may be regarded as regulatory factor to regulate the modal displacement distribution or modal sequence.","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"14 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D dynamic analysis of elastically restrained multi-directional FGMs rectangular parallelepiped\",\"authors\":\"Xiaochao Chen, Runbin Li, Chengcheng Chang, Lin Cheng\",\"doi\":\"10.1016/j.ijmecsci.2025.109950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the dynamic features of three-directional functionally graded materials (3DFGMs) rectangular parallelepiped with classic/elastic restraints are investigated based on 3D elastic theory. The general boundary conditions are implemented by introducing artificial displacement springs on the chosen surfaces of rectangular solid. The gradient materials are distributed along the two in-plane and thickness directions of parallelepiped. By setting boundary constraints and geometric parameters, the 3DFGMs rectangular parallelepiped can be evolved into slender beam, thick or thin plate, or even a cuboidal solid. Lagrangian energy functions are formulated for parallelepiped-spring system. The free vibration characters of 3DFGMs rectangular parallelepiped are solved employing the Ritz method in conjunction with the Jacobi polynomials. For transient analysis, the analytical expressions of impulse responses are derived for different types of pulsed excitation. The presented modeling and solution methods are validated by comparing with the results from open literature, finite element analysis and experimental results. Numerical simulations are performed to reveal the effect mechanisms of material gradients, geometrical configuration and boundary restraints on the vibration characters of 3DFGMs parallelepiped. The results demonstrate that dynamic performance of rectangular parallelepiped depends critically on material gradient which may be regarded as regulatory factor to regulate the modal displacement distribution or modal sequence.\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijmecsci.2025.109950\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ijmecsci.2025.109950","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
3D dynamic analysis of elastically restrained multi-directional FGMs rectangular parallelepiped
In this research, the dynamic features of three-directional functionally graded materials (3DFGMs) rectangular parallelepiped with classic/elastic restraints are investigated based on 3D elastic theory. The general boundary conditions are implemented by introducing artificial displacement springs on the chosen surfaces of rectangular solid. The gradient materials are distributed along the two in-plane and thickness directions of parallelepiped. By setting boundary constraints and geometric parameters, the 3DFGMs rectangular parallelepiped can be evolved into slender beam, thick or thin plate, or even a cuboidal solid. Lagrangian energy functions are formulated for parallelepiped-spring system. The free vibration characters of 3DFGMs rectangular parallelepiped are solved employing the Ritz method in conjunction with the Jacobi polynomials. For transient analysis, the analytical expressions of impulse responses are derived for different types of pulsed excitation. The presented modeling and solution methods are validated by comparing with the results from open literature, finite element analysis and experimental results. Numerical simulations are performed to reveal the effect mechanisms of material gradients, geometrical configuration and boundary restraints on the vibration characters of 3DFGMs parallelepiped. The results demonstrate that dynamic performance of rectangular parallelepiped depends critically on material gradient which may be regarded as regulatory factor to regulate the modal displacement distribution or modal sequence.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.