基于双模融合卷积网络的多中心脑年龄预测

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Medical image analysis Pub Date : 2025-01-10 DOI:10.1016/j.media.2025.103455
Xuebin Chang, Xiaoyan Jia, Simon B. Eickhoff, Debo Dong, Wei Zeng
{"title":"基于双模融合卷积网络的多中心脑年龄预测","authors":"Xuebin Chang, Xiaoyan Jia, Simon B. Eickhoff, Debo Dong, Wei Zeng","doi":"10.1016/j.media.2025.103455","DOIUrl":null,"url":null,"abstract":"Accurate prediction of brain age is crucial for identifying deviations between typical individual brain development trajectories and neuropsychiatric disease progression. Although current research has made progress, the effective application of brain age prediction models to multi-center datasets, particularly those with small-sample sizes, remains a significant challenge that is yet to be addressed. To this end, we propose a multi-center data correction method, which employs a domain adaptation correction strategy with Wasserstein distance of optimal transport, along with maximum mean discrepancy to improve the generalizability of brain-age prediction models on small-sample datasets. Additionally, most of the existing brain age models based on neuroimage identify the task of predicting brain age as a regression or classification problem, which may affect the accuracy of the prediction. Therefore, we propose a brain dual-modality fused convolutional neural network model (BrainDCN) for brain age prediction, and optimize this model by introducing a joint loss function of mean absolute error and cross-entropy, which identifies the prediction of brain age as both a regression and classification task. Furthermore, to highlight age-related features, we construct weighting matrices and vectors from a single-center training set and apply them to multi-center datasets to weight important features. We validate the BrainDCN model on the CamCAN dataset and achieve the lowest average absolute error compared to state-of-the-art models, demonstrating its superiority. Notably, the joint loss function and weighted features can further improve the prediction accuracy. More importantly, our proposed multi-center correction method is tested on four neuroimaging datasets and achieves the lowest average absolute error compared to widely used correction methods, highlighting the superior performance of the method in cross-center data integration and analysis. Furthermore, the application to multi-center schizophrenia data shows a mean accelerated aging compared to normal controls. Thus, this research establishes a pivotal methodological foundation for multi-center brain age prediction studies, exhibiting considerable applicability in clinical contexts, which are predominantly characterized by small-sample datasets.","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"9 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-center brain age prediction via dual-modality fusion convolutional network\",\"authors\":\"Xuebin Chang, Xiaoyan Jia, Simon B. Eickhoff, Debo Dong, Wei Zeng\",\"doi\":\"10.1016/j.media.2025.103455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction of brain age is crucial for identifying deviations between typical individual brain development trajectories and neuropsychiatric disease progression. Although current research has made progress, the effective application of brain age prediction models to multi-center datasets, particularly those with small-sample sizes, remains a significant challenge that is yet to be addressed. To this end, we propose a multi-center data correction method, which employs a domain adaptation correction strategy with Wasserstein distance of optimal transport, along with maximum mean discrepancy to improve the generalizability of brain-age prediction models on small-sample datasets. Additionally, most of the existing brain age models based on neuroimage identify the task of predicting brain age as a regression or classification problem, which may affect the accuracy of the prediction. Therefore, we propose a brain dual-modality fused convolutional neural network model (BrainDCN) for brain age prediction, and optimize this model by introducing a joint loss function of mean absolute error and cross-entropy, which identifies the prediction of brain age as both a regression and classification task. Furthermore, to highlight age-related features, we construct weighting matrices and vectors from a single-center training set and apply them to multi-center datasets to weight important features. We validate the BrainDCN model on the CamCAN dataset and achieve the lowest average absolute error compared to state-of-the-art models, demonstrating its superiority. Notably, the joint loss function and weighted features can further improve the prediction accuracy. More importantly, our proposed multi-center correction method is tested on four neuroimaging datasets and achieves the lowest average absolute error compared to widely used correction methods, highlighting the superior performance of the method in cross-center data integration and analysis. Furthermore, the application to multi-center schizophrenia data shows a mean accelerated aging compared to normal controls. Thus, this research establishes a pivotal methodological foundation for multi-center brain age prediction studies, exhibiting considerable applicability in clinical contexts, which are predominantly characterized by small-sample datasets.\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.media.2025.103455\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2025.103455","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

准确预测脑年龄对于识别典型个体大脑发育轨迹和神经精神疾病进展之间的偏差至关重要。尽管目前的研究已经取得了一定的进展,但如何将脑年龄预测模型有效地应用于多中心数据集,特别是小样本数据集,仍然是一个有待解决的重大挑战。为此,我们提出了一种多中心数据校正方法,该方法采用Wasserstein最优传输距离和最大平均差异的域自适应校正策略,以提高脑年龄预测模型在小样本数据集上的可泛化性。此外,大多数现有的基于神经图像的脑年龄模型将预测脑年龄的任务识别为回归或分类问题,这可能会影响预测的准确性。因此,我们提出了脑年龄预测的脑双模融合卷积神经网络模型(BrainDCN),并通过引入平均绝对误差和交叉熵的联合损失函数对该模型进行优化,该模型将脑年龄预测识别为回归和分类任务。此外,为了突出年龄相关特征,我们从单中心训练集构建加权矩阵和向量,并将其应用于多中心数据集,对重要特征进行加权。我们在CamCAN数据集上验证了BrainDCN模型,与最先进的模型相比,实现了最低的平均绝对误差,证明了它的优越性。值得注意的是,联合损失函数和加权特征可以进一步提高预测精度。更重要的是,我们提出的多中心校正方法在四个神经影像数据集上进行了测试,与广泛使用的校正方法相比,获得了最低的平均绝对误差,突出了该方法在跨中心数据集成和分析方面的优越性能。此外,应用于多中心精神分裂症数据显示,与正常对照相比,平均加速衰老。因此,本研究为多中心脑年龄预测研究奠定了关键的方法学基础,在临床环境中表现出相当大的适用性,这些研究主要以小样本数据集为特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-center brain age prediction via dual-modality fusion convolutional network
Accurate prediction of brain age is crucial for identifying deviations between typical individual brain development trajectories and neuropsychiatric disease progression. Although current research has made progress, the effective application of brain age prediction models to multi-center datasets, particularly those with small-sample sizes, remains a significant challenge that is yet to be addressed. To this end, we propose a multi-center data correction method, which employs a domain adaptation correction strategy with Wasserstein distance of optimal transport, along with maximum mean discrepancy to improve the generalizability of brain-age prediction models on small-sample datasets. Additionally, most of the existing brain age models based on neuroimage identify the task of predicting brain age as a regression or classification problem, which may affect the accuracy of the prediction. Therefore, we propose a brain dual-modality fused convolutional neural network model (BrainDCN) for brain age prediction, and optimize this model by introducing a joint loss function of mean absolute error and cross-entropy, which identifies the prediction of brain age as both a regression and classification task. Furthermore, to highlight age-related features, we construct weighting matrices and vectors from a single-center training set and apply them to multi-center datasets to weight important features. We validate the BrainDCN model on the CamCAN dataset and achieve the lowest average absolute error compared to state-of-the-art models, demonstrating its superiority. Notably, the joint loss function and weighted features can further improve the prediction accuracy. More importantly, our proposed multi-center correction method is tested on four neuroimaging datasets and achieves the lowest average absolute error compared to widely used correction methods, highlighting the superior performance of the method in cross-center data integration and analysis. Furthermore, the application to multi-center schizophrenia data shows a mean accelerated aging compared to normal controls. Thus, this research establishes a pivotal methodological foundation for multi-center brain age prediction studies, exhibiting considerable applicability in clinical contexts, which are predominantly characterized by small-sample datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
期刊最新文献
Corrigendum to "Detection and analysis of cerebral aneurysms based on X-ray rotational angiography - the CADA 2020 challenge" [Medical Image Analysis, April 2022, Volume 77, 102333]. Editorial for Special Issue on Foundation Models for Medical Image Analysis. Few-shot medical image segmentation with high-fidelity prototypes. The Developing Human Connectome Project: A fast deep learning-based pipeline for neonatal cortical surface reconstruction. SAF-IS: A spatial annotation free framework for instance segmentation of surgical tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1