Sebastiano D. von Fellenberg, Tamojeet Roychowdhury, Joseph M. Michail, Zach Sumners, Grace Sanger-Johnson, Giovanni G. Fazio, Daryl Haggard, Joseph L. Hora, Alexander Philippov, Bart Ripperda, Howard A. Smith, S. P. Willner, Gunther Witzel, Shuo Zhang, Eric E. Becklin, Geoffrey C. Bower, Sunil Chandra, Tuan Do, Macarena Garcia Marin, Mark A. Gurwell, Nicole M. Ford, Kazuhiro Hada, Sera Markoff, Mark R. Morris, Joey Neilsen, Nadeen B. Sabha and Braden Seefeldt-Gail
{"title":"人马座a *耀斑的首次中红外探测和建模","authors":"Sebastiano D. von Fellenberg, Tamojeet Roychowdhury, Joseph M. Michail, Zach Sumners, Grace Sanger-Johnson, Giovanni G. Fazio, Daryl Haggard, Joseph L. Hora, Alexander Philippov, Bart Ripperda, Howard A. Smith, S. P. Willner, Gunther Witzel, Shuo Zhang, Eric E. Becklin, Geoffrey C. Bower, Sunil Chandra, Tuan Do, Macarena Garcia Marin, Mark A. Gurwell, Nicole M. Ford, Kazuhiro Hada, Sera Markoff, Mark R. Morris, Joey Neilsen, Nadeen B. Sabha and Braden Seefeldt-Gail","doi":"10.3847/2041-8213/ada3d2","DOIUrl":null,"url":null,"abstract":"The time-variable emission from the accretion flow of Sgr A*, the supermassive black hole at the Galactic center, has long been examined in the radio-to-millimeter, near-infrared (NIR), and X-ray regimes of the electromagnetic spectrum. However, until now, sensitivity and angular resolution have been insufficient in the crucial mid-infrared (MIR) regime. The MIRI instrument on JWST has changed that, and we report the first MIR detection of Sgr A*. The detection was during a flare that lasted about 40 minutes, a duration similar to NIR and X-ray flares, and the source's spectral index steepened as the flare ended. The steepening suggests that synchrotron cooling is an important process for Sgr A*'s variability and implies magnetic fields strengths ~ 40–70 G in the emission zone. Observations at 1.3 mm with the Submillimeter Array revealed a counterpart flare lagging the MIR flare by ≈10 minutes. The observations can be self-consistently explained as synchrotron radiation from a single population of gradually cooling high-energy electrons accelerated through (a combination of) magnetic reconnection and/or magnetized turbulence.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First Mid-infrared Detection and Modeling of a Flare from Sgr A*\",\"authors\":\"Sebastiano D. von Fellenberg, Tamojeet Roychowdhury, Joseph M. Michail, Zach Sumners, Grace Sanger-Johnson, Giovanni G. Fazio, Daryl Haggard, Joseph L. Hora, Alexander Philippov, Bart Ripperda, Howard A. Smith, S. P. Willner, Gunther Witzel, Shuo Zhang, Eric E. Becklin, Geoffrey C. Bower, Sunil Chandra, Tuan Do, Macarena Garcia Marin, Mark A. Gurwell, Nicole M. Ford, Kazuhiro Hada, Sera Markoff, Mark R. Morris, Joey Neilsen, Nadeen B. Sabha and Braden Seefeldt-Gail\",\"doi\":\"10.3847/2041-8213/ada3d2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The time-variable emission from the accretion flow of Sgr A*, the supermassive black hole at the Galactic center, has long been examined in the radio-to-millimeter, near-infrared (NIR), and X-ray regimes of the electromagnetic spectrum. However, until now, sensitivity and angular resolution have been insufficient in the crucial mid-infrared (MIR) regime. The MIRI instrument on JWST has changed that, and we report the first MIR detection of Sgr A*. The detection was during a flare that lasted about 40 minutes, a duration similar to NIR and X-ray flares, and the source's spectral index steepened as the flare ended. The steepening suggests that synchrotron cooling is an important process for Sgr A*'s variability and implies magnetic fields strengths ~ 40–70 G in the emission zone. Observations at 1.3 mm with the Submillimeter Array revealed a counterpart flare lagging the MIR flare by ≈10 minutes. The observations can be self-consistently explained as synchrotron radiation from a single population of gradually cooling high-energy electrons accelerated through (a combination of) magnetic reconnection and/or magnetized turbulence.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ada3d2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ada3d2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
First Mid-infrared Detection and Modeling of a Flare from Sgr A*
The time-variable emission from the accretion flow of Sgr A*, the supermassive black hole at the Galactic center, has long been examined in the radio-to-millimeter, near-infrared (NIR), and X-ray regimes of the electromagnetic spectrum. However, until now, sensitivity and angular resolution have been insufficient in the crucial mid-infrared (MIR) regime. The MIRI instrument on JWST has changed that, and we report the first MIR detection of Sgr A*. The detection was during a flare that lasted about 40 minutes, a duration similar to NIR and X-ray flares, and the source's spectral index steepened as the flare ended. The steepening suggests that synchrotron cooling is an important process for Sgr A*'s variability and implies magnetic fields strengths ~ 40–70 G in the emission zone. Observations at 1.3 mm with the Submillimeter Array revealed a counterpart flare lagging the MIR flare by ≈10 minutes. The observations can be self-consistently explained as synchrotron radiation from a single population of gradually cooling high-energy electrons accelerated through (a combination of) magnetic reconnection and/or magnetized turbulence.