具有不对称配位结构的单原子镍位,用于高效光催化还原二氧化碳

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2025-01-20 DOI:10.1021/acssuschemeng.4c08332
Yingkui Yan, Ye Wang, Chenxiang Peng, Jing Wang, Xusheng Wang, Li Shi
{"title":"具有不对称配位结构的单原子镍位,用于高效光催化还原二氧化碳","authors":"Yingkui Yan, Ye Wang, Chenxiang Peng, Jing Wang, Xusheng Wang, Li Shi","doi":"10.1021/acssuschemeng.4c08332","DOIUrl":null,"url":null,"abstract":"The exploration of single-atom catalysts (SACs) with unique coordination structures is of vital importance for boosting photocatalytic CO<sub>2</sub> reduction, yet it remains challenging. Herein, we develop a novel SAC with a unique asymmetric coordination structure of the Ni catalytic site, which can trap photogenerated electrons to realize highly efficient photocatalytic CO<sub>2</sub> reduction in the presence of triethanolamine as an electron donor. Doping a B heteroatom into the N-doped carbon substrate would introduce B–N bond and meanwhile create defects, thus providing a feasible strategy to break the symmetry of the Ni–N<sub>4</sub> moiety and finally producing a coordination unsaturated Ni–N<sub>3</sub>–B structure. It is demonstrated that the asymmetric Ni–N<sub>3</sub>–B species can improve the electron trapping ability and reduce the formation energy barrier of the <sup>*</sup>COOH intermediate compared with the symmetric Ni–N<sub>4</sub> species for boosting photocatalytic CO<sub>2</sub> reduction. Such a concept of breaking the symmetric coordination structure of SACs could provide a promising approach for constructing effective catalytic sites toward solar energy-driven conversion.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"45 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Atom Ni Sites with Asymmetric Coordination Structures for Efficient Photocatalytic CO2 Reduction\",\"authors\":\"Yingkui Yan, Ye Wang, Chenxiang Peng, Jing Wang, Xusheng Wang, Li Shi\",\"doi\":\"10.1021/acssuschemeng.4c08332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exploration of single-atom catalysts (SACs) with unique coordination structures is of vital importance for boosting photocatalytic CO<sub>2</sub> reduction, yet it remains challenging. Herein, we develop a novel SAC with a unique asymmetric coordination structure of the Ni catalytic site, which can trap photogenerated electrons to realize highly efficient photocatalytic CO<sub>2</sub> reduction in the presence of triethanolamine as an electron donor. Doping a B heteroatom into the N-doped carbon substrate would introduce B–N bond and meanwhile create defects, thus providing a feasible strategy to break the symmetry of the Ni–N<sub>4</sub> moiety and finally producing a coordination unsaturated Ni–N<sub>3</sub>–B structure. It is demonstrated that the asymmetric Ni–N<sub>3</sub>–B species can improve the electron trapping ability and reduce the formation energy barrier of the <sup>*</sup>COOH intermediate compared with the symmetric Ni–N<sub>4</sub> species for boosting photocatalytic CO<sub>2</sub> reduction. Such a concept of breaking the symmetric coordination structure of SACs could provide a promising approach for constructing effective catalytic sites toward solar energy-driven conversion.\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssuschemeng.4c08332\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08332","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

探索具有独特配位结构的单原子催化剂(SACs)对于促进光催化CO2还原具有重要意义,但仍具有挑战性。在此,我们开发了一种具有独特的Ni催化位点不对称配位结构的新型SAC,该SAC可以在三乙醇胺作为电子供体存在的情况下捕获光生电子,从而实现高效的光催化CO2还原。在n掺杂碳衬底中掺杂B杂原子会引入B - n键,同时产生缺陷,从而为打破Ni-N4部分的对称性,最终产生配位不饱和Ni-N3-B结构提供了一种可行的策略。结果表明,与对称的Ni-N4相比,不对称的Ni-N3-B可以提高电子捕获能力,降低*COOH中间体的形成能垒,从而促进光催化CO2还原。这种打破SACs对称配位结构的概念为构建太阳能驱动转化的有效催化位点提供了一种有希望的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single-Atom Ni Sites with Asymmetric Coordination Structures for Efficient Photocatalytic CO2 Reduction
The exploration of single-atom catalysts (SACs) with unique coordination structures is of vital importance for boosting photocatalytic CO2 reduction, yet it remains challenging. Herein, we develop a novel SAC with a unique asymmetric coordination structure of the Ni catalytic site, which can trap photogenerated electrons to realize highly efficient photocatalytic CO2 reduction in the presence of triethanolamine as an electron donor. Doping a B heteroatom into the N-doped carbon substrate would introduce B–N bond and meanwhile create defects, thus providing a feasible strategy to break the symmetry of the Ni–N4 moiety and finally producing a coordination unsaturated Ni–N3–B structure. It is demonstrated that the asymmetric Ni–N3–B species can improve the electron trapping ability and reduce the formation energy barrier of the *COOH intermediate compared with the symmetric Ni–N4 species for boosting photocatalytic CO2 reduction. Such a concept of breaking the symmetric coordination structure of SACs could provide a promising approach for constructing effective catalytic sites toward solar energy-driven conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Uncovering the Techno-Economic and Environmental Implications of a Multiproduct Biorefinery from Exhausted Olive Pomace Industrial Perspective of Electrified Ethylene Production via Membrane-Assisted Nonoxidative Dehydrogenation of Ethane Codesign of Cyanobacteria Mutant Strains and Processes for Phosphorus Recovery from Livestock Wastewater Synergistic Effects of Anion Substitution and Interfacial Modification to Enhance Ionic Conductivity in a Hydride Electrolyte Impact of Chemical and Physical Treatments on the Structural and Surface Properties of Activated Carbon and Hydrochar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1