长视界机器人任务理解的主干

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2025-01-06 DOI:10.1109/LRA.2025.3526441
Xiaoshuai Chen;Wei Chen;Dongmyoung Lee;Yukun Ge;Nicolas Rojas;Petar Kormushev
{"title":"长视界机器人任务理解的主干","authors":"Xiaoshuai Chen;Wei Chen;Dongmyoung Lee;Yukun Ge;Nicolas Rojas;Petar Kormushev","doi":"10.1109/LRA.2025.3526441","DOIUrl":null,"url":null,"abstract":"End-to-end robotlearning, particularly for long-horizon tasks, often results in unpredictable outcomes and poor generalization. To address these challenges, we propose a novel <italic>Therblig-Based Backbone Framework (TBBF)</i> as a fundamental structure to enhance interpretability, data efficiency, and generalization in robotic systems. TBBF utilizes expert demonstrations to enable therblig-level task decomposition, facilitate efficient action-object mapping, and generate adaptive trajectories for new scenarios. The approach consists of two stages: offline training and online testing. During the offline training stage, we developed the <italic>Meta-RGate SynerFusion (MGSF)</i> network for accurate therblig segmentation across various tasks. In the online testing stage, after a one-shot demonstration of a new task is collected, our <italic>MGSF</i> network extracts high-level knowledge, which is then encoded into the image using <italic>Action Registration (ActionREG)</i>. Additionally, <italic>Large Language Model (LLM)-Alignment Policy for Visual Correction (LAP-VC)</i> is employed to ensure precise action registration, facilitating trajectory transfer in novel robot scenarios. Experimental results validate these methods, achieving 94.37% recall in therblig segmentation and success rates of 94.4% and 80% in real-world online robot testing for simple and complex scenarios, respectively.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"2048-2055"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Backbone for Long-Horizon Robot Task Understanding\",\"authors\":\"Xiaoshuai Chen;Wei Chen;Dongmyoung Lee;Yukun Ge;Nicolas Rojas;Petar Kormushev\",\"doi\":\"10.1109/LRA.2025.3526441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"End-to-end robotlearning, particularly for long-horizon tasks, often results in unpredictable outcomes and poor generalization. To address these challenges, we propose a novel <italic>Therblig-Based Backbone Framework (TBBF)</i> as a fundamental structure to enhance interpretability, data efficiency, and generalization in robotic systems. TBBF utilizes expert demonstrations to enable therblig-level task decomposition, facilitate efficient action-object mapping, and generate adaptive trajectories for new scenarios. The approach consists of two stages: offline training and online testing. During the offline training stage, we developed the <italic>Meta-RGate SynerFusion (MGSF)</i> network for accurate therblig segmentation across various tasks. In the online testing stage, after a one-shot demonstration of a new task is collected, our <italic>MGSF</i> network extracts high-level knowledge, which is then encoded into the image using <italic>Action Registration (ActionREG)</i>. Additionally, <italic>Large Language Model (LLM)-Alignment Policy for Visual Correction (LAP-VC)</i> is employed to ensure precise action registration, facilitating trajectory transfer in novel robot scenarios. Experimental results validate these methods, achieving 94.37% recall in therblig segmentation and success rates of 94.4% and 80% in real-world online robot testing for simple and complex scenarios, respectively.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 2\",\"pages\":\"2048-2055\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10829642/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10829642/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

端到端机器人学习,特别是对于长期任务,往往会导致不可预测的结果和较差的泛化。为了应对这些挑战,我们提出了一种新的基于therblig的骨干框架(TBBF)作为基本结构,以提高机器人系统的可解释性、数据效率和泛化。TBBF利用专家演示来实现层级任务分解,促进有效的动作-对象映射,并为新场景生成自适应轨迹。该方法包括两个阶段:离线培训和在线测试。在离线训练阶段,我们开发了Meta-RGate synnerfusion (MGSF)网络,用于跨各种任务的精确分割。在在线测试阶段,在收集新任务的一次性演示后,我们的MGSF网络提取高级知识,然后使用动作注册(ActionREG)将其编码到图像中。此外,采用大语言模型(LLM)-视觉校正对齐策略(LAP-VC)确保精确的动作配准,促进机器人在新场景下的轨迹转移。实验结果验证了这些方法的有效性,在简单场景和复杂场景下,图像分割的召回率分别为94.37%,在现实世界中,机器人在线测试的成功率分别为94.4%和80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Backbone for Long-Horizon Robot Task Understanding
End-to-end robotlearning, particularly for long-horizon tasks, often results in unpredictable outcomes and poor generalization. To address these challenges, we propose a novel Therblig-Based Backbone Framework (TBBF) as a fundamental structure to enhance interpretability, data efficiency, and generalization in robotic systems. TBBF utilizes expert demonstrations to enable therblig-level task decomposition, facilitate efficient action-object mapping, and generate adaptive trajectories for new scenarios. The approach consists of two stages: offline training and online testing. During the offline training stage, we developed the Meta-RGate SynerFusion (MGSF) network for accurate therblig segmentation across various tasks. In the online testing stage, after a one-shot demonstration of a new task is collected, our MGSF network extracts high-level knowledge, which is then encoded into the image using Action Registration (ActionREG). Additionally, Large Language Model (LLM)-Alignment Policy for Visual Correction (LAP-VC) is employed to ensure precise action registration, facilitating trajectory transfer in novel robot scenarios. Experimental results validate these methods, achieving 94.37% recall in therblig segmentation and success rates of 94.4% and 80% in real-world online robot testing for simple and complex scenarios, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Correction to “A Magnetic Capsule Robot With an Exoskeleton to Withstand Esophageal Pressure and Delivery Drug in Stomach” Corretions to “An Automatic Navigation Framework for Magnetic Fish-Like Millirobot in Uncertain Dynamic Environments” OMEGA: Open-Source and Multi-Mode Hopping Platform for Educational and Groundwork Aims Multi-DoF Optothermal Microgripper for Micromanipulation Applications Visuotactile-Based Learning for Insertion With Compliant Hands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1