Xuan Liu;Jinglong Chen;Jingsong Xie;Yuanhong Chang
{"title":"基于脉冲电压引导条件扩散模型的高铁转向架振动信号生成","authors":"Xuan Liu;Jinglong Chen;Jingsong Xie;Yuanhong Chang","doi":"10.1109/TITS.2024.3482106","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Networks (GANs) for generating realistic data, have substantially improved fault diagnosis algorithms in various Internet of Things (IoT) systems. However, challenges such as training instability and dynamical inaccuracy limit their utility in high-speed rail (HSR) bogie fault diagnosis. To address these challenges, we introduce the Pulse Voltage-Guided Conditional Diffusion Model (VGCDM). Unlike traditional implicit GANs, VGCDM adopts a sequential U-Net architecture, facilitating multi-steps denoising diffusion for generation, which bolsters training stability and mitigate convergence issues. VGCDM also incorporates control pulse voltage by cross-attention mechanism to ensure the alignment of vibration with voltage signals, enhancing the Conditional Diffusion Model’s progressive controlablity. Consequently, solely straightforward sampling of control voltages, ensuring the efficient transformation from Gaussian Noise to vibration signals. This adaptability remains robust even in scenarios with time-varying speeds. To validate the effectiveness, we conducted two case studies using SQ dataset and high-simulation HSR bogie dataset. The results of our experiments unequivocally confirm that VGCDM outperforms other generative models, achieving the best RSME, PSNR, and FSCS, showing its superiority in conditional HSR bogie vibration signal generation. For access, our code is available at <uri>https://github.com/xuanliu2000/VGCDM</uri>.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 1","pages":"116-127"},"PeriodicalIF":7.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating HSR Bogie Vibration Signals via Pulse Voltage-Guided Conditional Diffusion Model\",\"authors\":\"Xuan Liu;Jinglong Chen;Jingsong Xie;Yuanhong Chang\",\"doi\":\"10.1109/TITS.2024.3482106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative Adversarial Networks (GANs) for generating realistic data, have substantially improved fault diagnosis algorithms in various Internet of Things (IoT) systems. However, challenges such as training instability and dynamical inaccuracy limit their utility in high-speed rail (HSR) bogie fault diagnosis. To address these challenges, we introduce the Pulse Voltage-Guided Conditional Diffusion Model (VGCDM). Unlike traditional implicit GANs, VGCDM adopts a sequential U-Net architecture, facilitating multi-steps denoising diffusion for generation, which bolsters training stability and mitigate convergence issues. VGCDM also incorporates control pulse voltage by cross-attention mechanism to ensure the alignment of vibration with voltage signals, enhancing the Conditional Diffusion Model’s progressive controlablity. Consequently, solely straightforward sampling of control voltages, ensuring the efficient transformation from Gaussian Noise to vibration signals. This adaptability remains robust even in scenarios with time-varying speeds. To validate the effectiveness, we conducted two case studies using SQ dataset and high-simulation HSR bogie dataset. The results of our experiments unequivocally confirm that VGCDM outperforms other generative models, achieving the best RSME, PSNR, and FSCS, showing its superiority in conditional HSR bogie vibration signal generation. For access, our code is available at <uri>https://github.com/xuanliu2000/VGCDM</uri>.\",\"PeriodicalId\":13416,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Transportation Systems\",\"volume\":\"26 1\",\"pages\":\"116-127\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740529/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10740529/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Generating HSR Bogie Vibration Signals via Pulse Voltage-Guided Conditional Diffusion Model
Generative Adversarial Networks (GANs) for generating realistic data, have substantially improved fault diagnosis algorithms in various Internet of Things (IoT) systems. However, challenges such as training instability and dynamical inaccuracy limit their utility in high-speed rail (HSR) bogie fault diagnosis. To address these challenges, we introduce the Pulse Voltage-Guided Conditional Diffusion Model (VGCDM). Unlike traditional implicit GANs, VGCDM adopts a sequential U-Net architecture, facilitating multi-steps denoising diffusion for generation, which bolsters training stability and mitigate convergence issues. VGCDM also incorporates control pulse voltage by cross-attention mechanism to ensure the alignment of vibration with voltage signals, enhancing the Conditional Diffusion Model’s progressive controlablity. Consequently, solely straightforward sampling of control voltages, ensuring the efficient transformation from Gaussian Noise to vibration signals. This adaptability remains robust even in scenarios with time-varying speeds. To validate the effectiveness, we conducted two case studies using SQ dataset and high-simulation HSR bogie dataset. The results of our experiments unequivocally confirm that VGCDM outperforms other generative models, achieving the best RSME, PSNR, and FSCS, showing its superiority in conditional HSR bogie vibration signal generation. For access, our code is available at https://github.com/xuanliu2000/VGCDM.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.