巢式试验舱运动模式研究及冲击响应谱分析

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Access Pub Date : 2025-01-16 DOI:10.1109/ACCESS.2025.3529874
Wei Wu;Wei Luo;Xing Liu;Jia Cui;Pengyu Zhang
{"title":"巢式试验舱运动模式研究及冲击响应谱分析","authors":"Wei Wu;Wei Luo;Xing Liu;Jia Cui;Pengyu Zhang","doi":"10.1109/ACCESS.2025.3529874","DOIUrl":null,"url":null,"abstract":"This study investigates the motion patterns of the nested test cabin in a gunpowder gas overload test device. Multiple factors during the overload impact process were explored. Under the conditions of keeping the gunpowder combustion model, the friction coefficient between the inner and outer cabins, and the mass of the cabins unchanged, the special acceleration curve and its frequency spectrum and the impact response spectrum of the pseudo-velocity are analyzed. Numerical simulations and experimental studies revealed that there is compound motion between the inner and outer cabins in the gunpowder gas overload test device, resulting in small oscillations (referred to as oscillation wavelets) in the measurement results of the test system within the inner cabin. These oscillation wavelets occur when the critical acceleration of the test cabin reaches approximately 4700g. Increasing the initial velocity of the test cabin leads to a larger amplitude of the oscillation wavelets in the overall acceleration curve. In the frequency domain, secondary spectra appear under high overload conditions, and the bandwidth of the secondary spectra increases with the overload. The PVSRS trends for all overloads are roughly the same, with the variation in peak pseudo velocity being only on the order of <inline-formula> <tex-math>$10^{-3}$ </tex-math></inline-formula>. Theoretical analysis and experimental results show good consistency, which helps to better understand the motion process of the test cabin in the gunpowder gas overload test device and provides support for the improvement and design of the overall device.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"12044-12054"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843187","citationCount":"0","resultStr":"{\"title\":\"Study on the Motion Patterns of Nested Test Cabin and Its Shock Response Spectrum Analysis\",\"authors\":\"Wei Wu;Wei Luo;Xing Liu;Jia Cui;Pengyu Zhang\",\"doi\":\"10.1109/ACCESS.2025.3529874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the motion patterns of the nested test cabin in a gunpowder gas overload test device. Multiple factors during the overload impact process were explored. Under the conditions of keeping the gunpowder combustion model, the friction coefficient between the inner and outer cabins, and the mass of the cabins unchanged, the special acceleration curve and its frequency spectrum and the impact response spectrum of the pseudo-velocity are analyzed. Numerical simulations and experimental studies revealed that there is compound motion between the inner and outer cabins in the gunpowder gas overload test device, resulting in small oscillations (referred to as oscillation wavelets) in the measurement results of the test system within the inner cabin. These oscillation wavelets occur when the critical acceleration of the test cabin reaches approximately 4700g. Increasing the initial velocity of the test cabin leads to a larger amplitude of the oscillation wavelets in the overall acceleration curve. In the frequency domain, secondary spectra appear under high overload conditions, and the bandwidth of the secondary spectra increases with the overload. The PVSRS trends for all overloads are roughly the same, with the variation in peak pseudo velocity being only on the order of <inline-formula> <tex-math>$10^{-3}$ </tex-math></inline-formula>. Theoretical analysis and experimental results show good consistency, which helps to better understand the motion process of the test cabin in the gunpowder gas overload test device and provides support for the improvement and design of the overall device.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"12044-12054\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843187\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10843187/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10843187/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

研究了火药气体过载试验装置内嵌套试验舱的运动规律。探讨了超载冲击过程中的多种因素。在保持火药燃烧模型、内外舱摩擦系数和舱体质量不变的情况下,分析了伪速度的特殊加速度曲线及其频谱和冲击响应谱。数值模拟和实验研究表明,火药气体过载试验装置的内外舱之间存在复合运动,导致内舱内试验系统的测量结果出现小振荡(称为振荡小波)。当试验舱的临界加速度达到约4700g时,这些振荡小波就会出现。增加试验舱室的初始速度会导致整体加速度曲线中振荡小波的幅值增大。在频域上,二次频谱出现在高过载条件下,且二次频谱带宽随过载的增大而增大。所有过载的PVSRS趋势大致相同,峰值伪速度的变化仅在$10^{-3}$数量级。理论分析与实验结果具有较好的一致性,有助于更好地了解火药气体过载试验装置中试验舱室的运动过程,为整个装置的改进和设计提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the Motion Patterns of Nested Test Cabin and Its Shock Response Spectrum Analysis
This study investigates the motion patterns of the nested test cabin in a gunpowder gas overload test device. Multiple factors during the overload impact process were explored. Under the conditions of keeping the gunpowder combustion model, the friction coefficient between the inner and outer cabins, and the mass of the cabins unchanged, the special acceleration curve and its frequency spectrum and the impact response spectrum of the pseudo-velocity are analyzed. Numerical simulations and experimental studies revealed that there is compound motion between the inner and outer cabins in the gunpowder gas overload test device, resulting in small oscillations (referred to as oscillation wavelets) in the measurement results of the test system within the inner cabin. These oscillation wavelets occur when the critical acceleration of the test cabin reaches approximately 4700g. Increasing the initial velocity of the test cabin leads to a larger amplitude of the oscillation wavelets in the overall acceleration curve. In the frequency domain, secondary spectra appear under high overload conditions, and the bandwidth of the secondary spectra increases with the overload. The PVSRS trends for all overloads are roughly the same, with the variation in peak pseudo velocity being only on the order of $10^{-3}$ . Theoretical analysis and experimental results show good consistency, which helps to better understand the motion process of the test cabin in the gunpowder gas overload test device and provides support for the improvement and design of the overall device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
期刊最新文献
Editorial Board IEEE Access™ Editorial Board Corrections to “The Recent Technologies to Curb the Second-Wave of COVID-19 Pandemic” Corrections to “Decentralized Asynchronous Formation Planning of Multirotor Aerial Vehicles in Dynamic Environments Using Flexible Formation Graphs and Tight Trajectory Hulls” Study on the Motion Patterns of Nested Test Cabin and Its Shock Response Spectrum Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1