José Manuel Gaspar Sánchez;Leonard Bruns;Jana Tumova;Patric Jensfelt;Martin Törngren
{"title":"过渡网格地图:静态和动态占用的联合建模","authors":"José Manuel Gaspar Sánchez;Leonard Bruns;Jana Tumova;Patric Jensfelt;Martin Törngren","doi":"10.1109/OJITS.2024.3521449","DOIUrl":null,"url":null,"abstract":"Autonomous agents rely on sensor data to construct representations of their environments, essential for predicting future events and planning their actions. However, sensor measurements suffer from limited range, occlusions, and sensor noise. These challenges become more evident in highly dynamic environments. This work proposes a probabilistic framework to jointly infer which parts of an environment are statically and which parts are dynamically occupied. We formulate the problem as a Bayesian network and introduce minimal assumptions that significantly reduce the complexity of the problem. Based on those, we derive Transitional Grid Maps (TGMs), an efficient analytical solution. Using real data, we demonstrate how this approach produces better maps than the state-of-the-art by keeping track of both static and dynamic elements and, as a side effect, can help improve existing SLAM algorithms.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"6 ","pages":"1-10"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10813430","citationCount":"0","resultStr":"{\"title\":\"Transitional Grid Maps: Joint Modeling of Static and Dynamic Occupancy\",\"authors\":\"José Manuel Gaspar Sánchez;Leonard Bruns;Jana Tumova;Patric Jensfelt;Martin Törngren\",\"doi\":\"10.1109/OJITS.2024.3521449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous agents rely on sensor data to construct representations of their environments, essential for predicting future events and planning their actions. However, sensor measurements suffer from limited range, occlusions, and sensor noise. These challenges become more evident in highly dynamic environments. This work proposes a probabilistic framework to jointly infer which parts of an environment are statically and which parts are dynamically occupied. We formulate the problem as a Bayesian network and introduce minimal assumptions that significantly reduce the complexity of the problem. Based on those, we derive Transitional Grid Maps (TGMs), an efficient analytical solution. Using real data, we demonstrate how this approach produces better maps than the state-of-the-art by keeping track of both static and dynamic elements and, as a side effect, can help improve existing SLAM algorithms.\",\"PeriodicalId\":100631,\"journal\":{\"name\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"volume\":\"6 \",\"pages\":\"1-10\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10813430\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10813430/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10813430/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Transitional Grid Maps: Joint Modeling of Static and Dynamic Occupancy
Autonomous agents rely on sensor data to construct representations of their environments, essential for predicting future events and planning their actions. However, sensor measurements suffer from limited range, occlusions, and sensor noise. These challenges become more evident in highly dynamic environments. This work proposes a probabilistic framework to jointly infer which parts of an environment are statically and which parts are dynamically occupied. We formulate the problem as a Bayesian network and introduce minimal assumptions that significantly reduce the complexity of the problem. Based on those, we derive Transitional Grid Maps (TGMs), an efficient analytical solution. Using real data, we demonstrate how this approach produces better maps than the state-of-the-art by keeping track of both static and dynamic elements and, as a side effect, can help improve existing SLAM algorithms.