过渡网格地图:静态和动态占用的联合建模

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Open Journal of Intelligent Transportation Systems Pub Date : 2024-12-25 DOI:10.1109/OJITS.2024.3521449
José Manuel Gaspar Sánchez;Leonard Bruns;Jana Tumova;Patric Jensfelt;Martin Törngren
{"title":"过渡网格地图:静态和动态占用的联合建模","authors":"José Manuel Gaspar Sánchez;Leonard Bruns;Jana Tumova;Patric Jensfelt;Martin Törngren","doi":"10.1109/OJITS.2024.3521449","DOIUrl":null,"url":null,"abstract":"Autonomous agents rely on sensor data to construct representations of their environments, essential for predicting future events and planning their actions. However, sensor measurements suffer from limited range, occlusions, and sensor noise. These challenges become more evident in highly dynamic environments. This work proposes a probabilistic framework to jointly infer which parts of an environment are statically and which parts are dynamically occupied. We formulate the problem as a Bayesian network and introduce minimal assumptions that significantly reduce the complexity of the problem. Based on those, we derive Transitional Grid Maps (TGMs), an efficient analytical solution. Using real data, we demonstrate how this approach produces better maps than the state-of-the-art by keeping track of both static and dynamic elements and, as a side effect, can help improve existing SLAM algorithms.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"6 ","pages":"1-10"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10813430","citationCount":"0","resultStr":"{\"title\":\"Transitional Grid Maps: Joint Modeling of Static and Dynamic Occupancy\",\"authors\":\"José Manuel Gaspar Sánchez;Leonard Bruns;Jana Tumova;Patric Jensfelt;Martin Törngren\",\"doi\":\"10.1109/OJITS.2024.3521449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous agents rely on sensor data to construct representations of their environments, essential for predicting future events and planning their actions. However, sensor measurements suffer from limited range, occlusions, and sensor noise. These challenges become more evident in highly dynamic environments. This work proposes a probabilistic framework to jointly infer which parts of an environment are statically and which parts are dynamically occupied. We formulate the problem as a Bayesian network and introduce minimal assumptions that significantly reduce the complexity of the problem. Based on those, we derive Transitional Grid Maps (TGMs), an efficient analytical solution. Using real data, we demonstrate how this approach produces better maps than the state-of-the-art by keeping track of both static and dynamic elements and, as a side effect, can help improve existing SLAM algorithms.\",\"PeriodicalId\":100631,\"journal\":{\"name\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"volume\":\"6 \",\"pages\":\"1-10\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10813430\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10813430/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10813430/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

自主代理依靠传感器数据来构建其环境的表示,这对于预测未来事件和计划行动至关重要。然而,传感器测量受到范围限制、遮挡和传感器噪声的影响。这些挑战在高度动态的环境中变得更加明显。这项工作提出了一个概率框架来共同推断环境的哪些部分是静态的,哪些部分是动态占用的。我们将问题表述为一个贝叶斯网络,并引入最小的假设,显著降低了问题的复杂性。在此基础上,我们推导出一种高效的解析解——过渡网格图(TGMs)。通过使用真实数据,我们展示了这种方法如何通过跟踪静态和动态元素来生成比最先进的地图更好的地图,并且作为副作用,可以帮助改进现有的SLAM算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transitional Grid Maps: Joint Modeling of Static and Dynamic Occupancy
Autonomous agents rely on sensor data to construct representations of their environments, essential for predicting future events and planning their actions. However, sensor measurements suffer from limited range, occlusions, and sensor noise. These challenges become more evident in highly dynamic environments. This work proposes a probabilistic framework to jointly infer which parts of an environment are statically and which parts are dynamically occupied. We formulate the problem as a Bayesian network and introduce minimal assumptions that significantly reduce the complexity of the problem. Based on those, we derive Transitional Grid Maps (TGMs), an efficient analytical solution. Using real data, we demonstrate how this approach produces better maps than the state-of-the-art by keeping track of both static and dynamic elements and, as a side effect, can help improve existing SLAM algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Open Journal of Intelligent Transportation Systems Vol. 5 Safety-Critical Oracles for Metamorphic Testing of Deep Learning LiDAR Point Cloud Object Detectors Front Cover IEEE Open Journal of Intelligent Transportation Systems Instructions for Authors IEEE OPEN JOURNAL OF THE INTELLIGENT TRANSPORTATION SYSTEMS SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1