{"title":"通过关节交叉注意融合增强无参考视听质量评估","authors":"Zhaolin Wan;Xiguang Hao;Xiaopeng Fan;Wangmeng Zuo;Debin Zhao","doi":"10.1109/LSP.2024.3522855","DOIUrl":null,"url":null,"abstract":"As the consumption of multimedia content continues to rise, audio and video have become central to everyday entertainment and social interactions. This growing reliance amplifies the demand for effective and objective audio-visual quality assessment (AVQA) to understand the interaction between audio and visual elements, ultimately enhancing user satisfaction. However, existing state-of-the-art AVQA methods often rely on simplistic machine learning models or fully connected networks for audio-visual signal fusion, which limits their ability to exploit the complementary nature of these modalities. In response to this gap, we propose a novel no-reference AVQA method that utilizes joint cross-attention fusion of audio-visual perception. Our approach begins with a dual-stream feature extraction process that simultaneously captures long-range spatiotemporal visual features and audio features. The fusion model then dynamically adjusts the contributions of features from both modalities, effectively integrating them to provide a more comprehensive perception for quality score prediction. Experimental results on the LIVE-SJTU and UnB-AVC datasets demonstrate that our model outperforms state-of-the-art methods, achieving superior performance in audio-visual quality assessment.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"556-560"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing No-Reference Audio-Visual Quality Assessment via Joint Cross-Attention Fusion\",\"authors\":\"Zhaolin Wan;Xiguang Hao;Xiaopeng Fan;Wangmeng Zuo;Debin Zhao\",\"doi\":\"10.1109/LSP.2024.3522855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the consumption of multimedia content continues to rise, audio and video have become central to everyday entertainment and social interactions. This growing reliance amplifies the demand for effective and objective audio-visual quality assessment (AVQA) to understand the interaction between audio and visual elements, ultimately enhancing user satisfaction. However, existing state-of-the-art AVQA methods often rely on simplistic machine learning models or fully connected networks for audio-visual signal fusion, which limits their ability to exploit the complementary nature of these modalities. In response to this gap, we propose a novel no-reference AVQA method that utilizes joint cross-attention fusion of audio-visual perception. Our approach begins with a dual-stream feature extraction process that simultaneously captures long-range spatiotemporal visual features and audio features. The fusion model then dynamically adjusts the contributions of features from both modalities, effectively integrating them to provide a more comprehensive perception for quality score prediction. Experimental results on the LIVE-SJTU and UnB-AVC datasets demonstrate that our model outperforms state-of-the-art methods, achieving superior performance in audio-visual quality assessment.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"556-560\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816299/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10816299/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Enhancing No-Reference Audio-Visual Quality Assessment via Joint Cross-Attention Fusion
As the consumption of multimedia content continues to rise, audio and video have become central to everyday entertainment and social interactions. This growing reliance amplifies the demand for effective and objective audio-visual quality assessment (AVQA) to understand the interaction between audio and visual elements, ultimately enhancing user satisfaction. However, existing state-of-the-art AVQA methods often rely on simplistic machine learning models or fully connected networks for audio-visual signal fusion, which limits their ability to exploit the complementary nature of these modalities. In response to this gap, we propose a novel no-reference AVQA method that utilizes joint cross-attention fusion of audio-visual perception. Our approach begins with a dual-stream feature extraction process that simultaneously captures long-range spatiotemporal visual features and audio features. The fusion model then dynamically adjusts the contributions of features from both modalities, effectively integrating them to provide a more comprehensive perception for quality score prediction. Experimental results on the LIVE-SJTU and UnB-AVC datasets demonstrate that our model outperforms state-of-the-art methods, achieving superior performance in audio-visual quality assessment.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.