基于点云网络的雷达信号脉冲内调制识别

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-12-11 DOI:10.1109/LSP.2024.3514796
Tao Chen;Hao Tian;Yingming Liu;Yihan Xiao;Boyi Yang
{"title":"基于点云网络的雷达信号脉冲内调制识别","authors":"Tao Chen;Hao Tian;Yingming Liu;Yihan Xiao;Boyi Yang","doi":"10.1109/LSP.2024.3514796","DOIUrl":null,"url":null,"abstract":"Aiming at the existing deep learning radar signal modulation recognition methods are mostly based on time-frequency image (TFI) and consequently result in networks with a large number of parameters due to the significant amount of redundant information contained in TFI, this paper proposes a radar signal intra-pulse modulation recognition method based on point cloud which removes redundant information. Radar signals of different modulation types are mapped into point cloud after Smoothed Pseudo Wigner-Ville Distribution (SPWVD) transformation. Then, PointNet++ is used to classify the point cloud data according to its modulation type and output its corresponding modulation type labels. Simulation results show that the proposed method can effectively recognize radar signals of typical modulation types, and show strong effectiveness and reliability at low signal-to-noise ratio (SNR). Besides, the lightweight characteristics of PointNet++ make the operation of the method more efficient.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"596-600"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radar Signal Intra-Pulse Modulation Recognition Based on Point Cloud Network\",\"authors\":\"Tao Chen;Hao Tian;Yingming Liu;Yihan Xiao;Boyi Yang\",\"doi\":\"10.1109/LSP.2024.3514796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the existing deep learning radar signal modulation recognition methods are mostly based on time-frequency image (TFI) and consequently result in networks with a large number of parameters due to the significant amount of redundant information contained in TFI, this paper proposes a radar signal intra-pulse modulation recognition method based on point cloud which removes redundant information. Radar signals of different modulation types are mapped into point cloud after Smoothed Pseudo Wigner-Ville Distribution (SPWVD) transformation. Then, PointNet++ is used to classify the point cloud data according to its modulation type and output its corresponding modulation type labels. Simulation results show that the proposed method can effectively recognize radar signals of typical modulation types, and show strong effectiveness and reliability at low signal-to-noise ratio (SNR). Besides, the lightweight characteristics of PointNet++ make the operation of the method more efficient.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"596-600\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10787534/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10787534/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

针对现有的深度学习雷达信号调制识别方法多基于时频图像(TFI), TFI中含有大量冗余信息,导致网络参数较多的问题,本文提出了一种基于点云的去除冗余信息的雷达信号脉冲内调制识别方法。将不同调制类型的雷达信号经过平滑伪维格纳-维尔分布(SPWVD)变换后映射成点云。然后,使用PointNet++对点云数据进行调制类型分类,输出相应的调制类型标签。仿真结果表明,该方法能有效识别典型调制类型的雷达信号,在低信噪比下具有较强的有效性和可靠性。此外,PointNet++的轻量级特性使该方法的操作效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radar Signal Intra-Pulse Modulation Recognition Based on Point Cloud Network
Aiming at the existing deep learning radar signal modulation recognition methods are mostly based on time-frequency image (TFI) and consequently result in networks with a large number of parameters due to the significant amount of redundant information contained in TFI, this paper proposes a radar signal intra-pulse modulation recognition method based on point cloud which removes redundant information. Radar signals of different modulation types are mapped into point cloud after Smoothed Pseudo Wigner-Ville Distribution (SPWVD) transformation. Then, PointNet++ is used to classify the point cloud data according to its modulation type and output its corresponding modulation type labels. Simulation results show that the proposed method can effectively recognize radar signals of typical modulation types, and show strong effectiveness and reliability at low signal-to-noise ratio (SNR). Besides, the lightweight characteristics of PointNet++ make the operation of the method more efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Heterogeneous Dual-Branch Emotional Consistency Network for Facial Expression Recognition Adaptive Superpixel-Guided Non-Homogeneous Image Dehazing Video Inpainting Localization With Contrastive Learning Cross-View Fusion for Multi-View Clustering Piecewise Student's t-distribution Mixture Model-Based Estimation for NAND Flash Memory Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1