测量相关信噪比条件下稀疏阵列的cram - rao边界和分辨率优势

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2025-01-03 DOI:10.1109/LSP.2024.3525400
Sina Shahsavari;Piya Pal
{"title":"测量相关信噪比条件下稀疏阵列的cram<s:1> - rao边界和分辨率优势","authors":"Sina Shahsavari;Piya Pal","doi":"10.1109/LSP.2024.3525400","DOIUrl":null,"url":null,"abstract":"This paper derives new non-asymptotic characterization of the Cramér-Rao Bound (CRB) of any sparse array as a function of the angular separation between two far-field narrowband sources in certain regimes characterized by a low Signal-to-Noise Ratio (SNR). The primary contribution is the derivation of matching upper and lower bounds on the CRB in a certain measurement-dependent SNR (MD-SNR) regime, where one can zoom into progressively lower SNR as the number of sensors increases. This tight characterization helps to establish that sparse arrays such as nested and coprime arrays provably exhibit lower CRB compared to Uniform Linear Arrays (ULAs) in the specified SNR regime.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"601-605"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cramér-Rao Bounds and Resolution Benefits of Sparse Arrays in Measurement-Dependent SNR Regimes\",\"authors\":\"Sina Shahsavari;Piya Pal\",\"doi\":\"10.1109/LSP.2024.3525400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper derives new non-asymptotic characterization of the Cramér-Rao Bound (CRB) of any sparse array as a function of the angular separation between two far-field narrowband sources in certain regimes characterized by a low Signal-to-Noise Ratio (SNR). The primary contribution is the derivation of matching upper and lower bounds on the CRB in a certain measurement-dependent SNR (MD-SNR) regime, where one can zoom into progressively lower SNR as the number of sensors increases. This tight characterization helps to establish that sparse arrays such as nested and coprime arrays provably exhibit lower CRB compared to Uniform Linear Arrays (ULAs) in the specified SNR regime.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"601-605\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10820977/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10820977/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了在低信噪比条件下,任意稀疏阵列的cram r- rao界(CRB)作为两个远场窄带源间角间距函数的非渐近刻画。主要贡献是在特定测量依赖的信噪比(MD-SNR)制度下匹配CRB的上界和下界的推导,其中可以随着传感器数量的增加而逐渐放大到较低的信噪比。这种严格的表征有助于建立稀疏阵列,如嵌套阵列和协素数阵列,在特定的信噪比下,与均匀线性阵列(ULAs)相比,可证明具有更低的CRB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cramér-Rao Bounds and Resolution Benefits of Sparse Arrays in Measurement-Dependent SNR Regimes
This paper derives new non-asymptotic characterization of the Cramér-Rao Bound (CRB) of any sparse array as a function of the angular separation between two far-field narrowband sources in certain regimes characterized by a low Signal-to-Noise Ratio (SNR). The primary contribution is the derivation of matching upper and lower bounds on the CRB in a certain measurement-dependent SNR (MD-SNR) regime, where one can zoom into progressively lower SNR as the number of sensors increases. This tight characterization helps to establish that sparse arrays such as nested and coprime arrays provably exhibit lower CRB compared to Uniform Linear Arrays (ULAs) in the specified SNR regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Heterogeneous Dual-Branch Emotional Consistency Network for Facial Expression Recognition Adaptive Superpixel-Guided Non-Homogeneous Image Dehazing Video Inpainting Localization With Contrastive Learning Cross-View Fusion for Multi-View Clustering Piecewise Student's t-distribution Mixture Model-Based Estimation for NAND Flash Memory Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1