PFCNet:基于像素感知的变频网络增强钢轨表面缺陷检测

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2025-01-06 DOI:10.1109/LSP.2025.3525855
Yue Wu;Fangfang Qiang;Wujie Zhou;Weiqing Yan
{"title":"PFCNet:基于像素感知的变频网络增强钢轨表面缺陷检测","authors":"Yue Wu;Fangfang Qiang;Wujie Zhou;Weiqing Yan","doi":"10.1109/LSP.2025.3525855","DOIUrl":null,"url":null,"abstract":"Applying computer vision techniques to rail surface defect detection (RSDD) is crucial for preventing catastrophic accidents. However, challenges such as complex backgrounds and irregular defect shapes persist. Previous methods have focused on extracting salient object information from a pixel perspective, thereby neglecting valuable high- and low-frequency image information, which can better capture global structural information. In this study, we design a pixel-aware frequency conversion network (PFCNet) to explore RSDD from a frequency domain perspective. We use different attention mechanisms and frequency enhancement for high-level and shallow features to explore local details and global structures comprehensively. In addition, we design a dual-control reorganization module to refine the features across levels. We conducted extensive experiments on an industrial RGB-D dataset (NEU RSDDS-AUG), and PFCNet achieved superior performance.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"606-610"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PFCNet: Enhancing Rail Surface Defect Detection With Pixel-Aware Frequency Conversion Networks\",\"authors\":\"Yue Wu;Fangfang Qiang;Wujie Zhou;Weiqing Yan\",\"doi\":\"10.1109/LSP.2025.3525855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applying computer vision techniques to rail surface defect detection (RSDD) is crucial for preventing catastrophic accidents. However, challenges such as complex backgrounds and irregular defect shapes persist. Previous methods have focused on extracting salient object information from a pixel perspective, thereby neglecting valuable high- and low-frequency image information, which can better capture global structural information. In this study, we design a pixel-aware frequency conversion network (PFCNet) to explore RSDD from a frequency domain perspective. We use different attention mechanisms and frequency enhancement for high-level and shallow features to explore local details and global structures comprehensively. In addition, we design a dual-control reorganization module to refine the features across levels. We conducted extensive experiments on an industrial RGB-D dataset (NEU RSDDS-AUG), and PFCNet achieved superior performance.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"606-610\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10824912/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10824912/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

将计算机视觉技术应用到钢轨表面缺陷检测中,对于防止灾难性事故的发生至关重要。然而,复杂的背景和不规则的缺陷形状等挑战仍然存在。以往的方法侧重于从像素角度提取显著目标信息,从而忽略了有价值的高低频图像信息,而这些信息可以更好地捕获全局结构信息。在本研究中,我们设计了一个像素感知频率转换网络(PFCNet),从频域角度探索RSDD。我们对高层次和浅层特征采用不同的注意机制和频率增强,以全面探索局部细节和全局结构。此外,我们设计了一个双控重组模块来细化跨关卡的特征。我们在工业RGB-D数据集(NEU RSDDS-AUG)上进行了大量实验,PFCNet取得了优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PFCNet: Enhancing Rail Surface Defect Detection With Pixel-Aware Frequency Conversion Networks
Applying computer vision techniques to rail surface defect detection (RSDD) is crucial for preventing catastrophic accidents. However, challenges such as complex backgrounds and irregular defect shapes persist. Previous methods have focused on extracting salient object information from a pixel perspective, thereby neglecting valuable high- and low-frequency image information, which can better capture global structural information. In this study, we design a pixel-aware frequency conversion network (PFCNet) to explore RSDD from a frequency domain perspective. We use different attention mechanisms and frequency enhancement for high-level and shallow features to explore local details and global structures comprehensively. In addition, we design a dual-control reorganization module to refine the features across levels. We conducted extensive experiments on an industrial RGB-D dataset (NEU RSDDS-AUG), and PFCNet achieved superior performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Heterogeneous Dual-Branch Emotional Consistency Network for Facial Expression Recognition Adaptive Superpixel-Guided Non-Homogeneous Image Dehazing Video Inpainting Localization With Contrastive Learning Cross-View Fusion for Multi-View Clustering Piecewise Student's t-distribution Mixture Model-Based Estimation for NAND Flash Memory Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1