基于改进MOEA/D的无关联并行机退化感知协同节能批量调度与维护

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2025-01-06 DOI:10.1109/LRA.2025.3526571
Haixuan Wang;Fei Qiao;Shengxi Jiang;Haibin Zhu;Junkai Wang
{"title":"基于改进MOEA/D的无关联并行机退化感知协同节能批量调度与维护","authors":"Haixuan Wang;Fei Qiao;Shengxi Jiang;Haibin Zhu;Junkai Wang","doi":"10.1109/LRA.2025.3526571","DOIUrl":null,"url":null,"abstract":"The deterioration phenomenon is common and lasting as machines' service time increases within energy-intensive manufacturing processes such as heat treatment, which may bring about processes time extension or even the breakdown of a machine. It is crucial to collaboratively optimize batch scheduling and maintenance to ensure stable, efficient production, and achieve energy efficiency. This study takes into account preventive maintenance, where a maintenance activity is carried out after a certain number of batches are processed. A novel multi-objective mixed-integer programming model for unrelated parallel batching machines is proposed to minimize the makespan, total completion time and total energy consumption. The entire problem is broken down into four sub-issues: job division, job dispatching, batch formation and batch sequencing. Given the NP-hard nature of the problem, three heuristic algorithms based on several structural properties are designed according to the features of the latter three parts. Meanwhile, an integrated methodology, a Multi-Objective Evolutionary Algorithm based on Decomposition combined with Variable Neighborhood Search (MOEA/D-VNS), is put forward to handle job division and the multi-dimensional collaborative optimization problem. The performance of the proposed algorithms is compared with that of other typical dominance-based evolutionary algorithms. Extensive numerical experiments are conducted to validate the effectiveness of the proposed model and algorithms.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"2056-2063"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deterioration-Aware Collaborative Energy-Efficient Batch Scheduling and Maintenance for Unrelated Parallel Machines Based on Improved MOEA/D\",\"authors\":\"Haixuan Wang;Fei Qiao;Shengxi Jiang;Haibin Zhu;Junkai Wang\",\"doi\":\"10.1109/LRA.2025.3526571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deterioration phenomenon is common and lasting as machines' service time increases within energy-intensive manufacturing processes such as heat treatment, which may bring about processes time extension or even the breakdown of a machine. It is crucial to collaboratively optimize batch scheduling and maintenance to ensure stable, efficient production, and achieve energy efficiency. This study takes into account preventive maintenance, where a maintenance activity is carried out after a certain number of batches are processed. A novel multi-objective mixed-integer programming model for unrelated parallel batching machines is proposed to minimize the makespan, total completion time and total energy consumption. The entire problem is broken down into four sub-issues: job division, job dispatching, batch formation and batch sequencing. Given the NP-hard nature of the problem, three heuristic algorithms based on several structural properties are designed according to the features of the latter three parts. Meanwhile, an integrated methodology, a Multi-Objective Evolutionary Algorithm based on Decomposition combined with Variable Neighborhood Search (MOEA/D-VNS), is put forward to handle job division and the multi-dimensional collaborative optimization problem. The performance of the proposed algorithms is compared with that of other typical dominance-based evolutionary algorithms. Extensive numerical experiments are conducted to validate the effectiveness of the proposed model and algorithms.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 2\",\"pages\":\"2056-2063\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10829663/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10829663/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

在热处理等能源密集型制造过程中,随着机器使用时间的增加,劣化现象普遍且持久,可能导致加工时间延长甚至机器故障。协同优化批调度和维护对于确保稳定、高效的生产和实现能源效率至关重要。本研究考虑了预防性维修,即在处理了一定数量的批次后进行维修活动。以最大完工时间、总完工时间和总能耗最小为目标,提出了一种新的多目标混合整数规划模型。整个问题分为四个子问题:作业划分、作业调度、批生成和批排序。考虑到问题的NP-hard性质,根据后三部分的特点,设计了三种基于几种结构性质的启发式算法。同时,提出了一种基于分解与变邻域搜索相结合的多目标进化算法(MOEA/D-VNS)来处理任务划分和多维协同优化问题。将该算法的性能与其他典型的基于优势的进化算法进行了比较。大量的数值实验验证了所提出的模型和算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deterioration-Aware Collaborative Energy-Efficient Batch Scheduling and Maintenance for Unrelated Parallel Machines Based on Improved MOEA/D
The deterioration phenomenon is common and lasting as machines' service time increases within energy-intensive manufacturing processes such as heat treatment, which may bring about processes time extension or even the breakdown of a machine. It is crucial to collaboratively optimize batch scheduling and maintenance to ensure stable, efficient production, and achieve energy efficiency. This study takes into account preventive maintenance, where a maintenance activity is carried out after a certain number of batches are processed. A novel multi-objective mixed-integer programming model for unrelated parallel batching machines is proposed to minimize the makespan, total completion time and total energy consumption. The entire problem is broken down into four sub-issues: job division, job dispatching, batch formation and batch sequencing. Given the NP-hard nature of the problem, three heuristic algorithms based on several structural properties are designed according to the features of the latter three parts. Meanwhile, an integrated methodology, a Multi-Objective Evolutionary Algorithm based on Decomposition combined with Variable Neighborhood Search (MOEA/D-VNS), is put forward to handle job division and the multi-dimensional collaborative optimization problem. The performance of the proposed algorithms is compared with that of other typical dominance-based evolutionary algorithms. Extensive numerical experiments are conducted to validate the effectiveness of the proposed model and algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
RA-RRTV*: Risk-Averse RRT* With Local Vine Expansion for Path Planning in Narrow Passages Under Localization Uncertainty Controlling Pneumatic Bending Actuator With Gain-Scheduled Feedforward and Physical Reservoir Computing State Estimation Funabot-Sleeve: A Wearable Device Employing McKibben Artificial Muscles for Haptic Sensation in the Forearm 3D Guidance Law for Flexible Target Enclosing With Inherent Safety Learning Agile Swimming: An End-to-End Approach Without CPGs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1