RA-RRTV*:局域不确定性条件下窄小通道路径规划的风险规避RRT*

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2025-01-15 DOI:10.1109/LRA.2025.3528675
Shi Zhang;Rongxin Cui;Weisheng Yan;Yinglin Li
{"title":"RA-RRTV*:局域不确定性条件下窄小通道路径规划的风险规避RRT*","authors":"Shi Zhang;Rongxin Cui;Weisheng Yan;Yinglin Li","doi":"10.1109/LRA.2025.3528675","DOIUrl":null,"url":null,"abstract":"Recent advances in sampling-based algorithms have enhanced the ability of mobile robots to navigate safely in environments with localization uncertainty. However, navigating narrow passages remains a significant challenge due to the heightened risks posed by uncertainty. In this letter, we present a novel algorithm, Risk-Averse RRT* with Local Vine Expansion Behavior (RA-RRTV*), to systematically address these challenges. The algorithm combines RRT* with chance constraints and incorporates an objective function to balance path length and risk, enabling the discovery of risk-averse paths. Narrow passages in the belief space are identified using sample-based information, while sequential Bayesian sampling is employed to guide the expansion of local belief vines, ensuring connectivity in high-risk regions. We provide proof of the asymptotic optimality of RA-RRTV*. The effectiveness of RA-RRTV* is demonstrated through extensive simulations and real-world experiments.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"2072-2079"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RA-RRTV*: Risk-Averse RRT* With Local Vine Expansion for Path Planning in Narrow Passages Under Localization Uncertainty\",\"authors\":\"Shi Zhang;Rongxin Cui;Weisheng Yan;Yinglin Li\",\"doi\":\"10.1109/LRA.2025.3528675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in sampling-based algorithms have enhanced the ability of mobile robots to navigate safely in environments with localization uncertainty. However, navigating narrow passages remains a significant challenge due to the heightened risks posed by uncertainty. In this letter, we present a novel algorithm, Risk-Averse RRT* with Local Vine Expansion Behavior (RA-RRTV*), to systematically address these challenges. The algorithm combines RRT* with chance constraints and incorporates an objective function to balance path length and risk, enabling the discovery of risk-averse paths. Narrow passages in the belief space are identified using sample-based information, while sequential Bayesian sampling is employed to guide the expansion of local belief vines, ensuring connectivity in high-risk regions. We provide proof of the asymptotic optimality of RA-RRTV*. The effectiveness of RA-RRTV* is demonstrated through extensive simulations and real-world experiments.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 2\",\"pages\":\"2072-2079\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10840206/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10840206/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

基于采样算法的最新进展增强了移动机器人在具有定位不确定性的环境中安全导航的能力。然而,由于不确定性带来的风险增加,在狭窄的航道上航行仍然是一项重大挑战。在这篇文章中,我们提出了一种新的算法,Risk-Averse RRT* with Local Vine Expansion Behavior (RA-RRTV*),来系统地解决这些挑战。该算法将RRT*与机会约束相结合,并引入目标函数来平衡路径长度和风险,从而发现规避风险的路径。使用基于样本的信息识别信念空间中的狭窄通道,同时使用顺序贝叶斯抽样来指导局部信念藤的扩展,确保高风险区域的连通性。给出了RA-RRTV*的渐近最优性证明。RA-RRTV*的有效性通过广泛的模拟和现实世界的实验证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RA-RRTV*: Risk-Averse RRT* With Local Vine Expansion for Path Planning in Narrow Passages Under Localization Uncertainty
Recent advances in sampling-based algorithms have enhanced the ability of mobile robots to navigate safely in environments with localization uncertainty. However, navigating narrow passages remains a significant challenge due to the heightened risks posed by uncertainty. In this letter, we present a novel algorithm, Risk-Averse RRT* with Local Vine Expansion Behavior (RA-RRTV*), to systematically address these challenges. The algorithm combines RRT* with chance constraints and incorporates an objective function to balance path length and risk, enabling the discovery of risk-averse paths. Narrow passages in the belief space are identified using sample-based information, while sequential Bayesian sampling is employed to guide the expansion of local belief vines, ensuring connectivity in high-risk regions. We provide proof of the asymptotic optimality of RA-RRTV*. The effectiveness of RA-RRTV* is demonstrated through extensive simulations and real-world experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
RA-RRTV*: Risk-Averse RRT* With Local Vine Expansion for Path Planning in Narrow Passages Under Localization Uncertainty Controlling Pneumatic Bending Actuator With Gain-Scheduled Feedforward and Physical Reservoir Computing State Estimation Funabot-Sleeve: A Wearable Device Employing McKibben Artificial Muscles for Haptic Sensation in the Forearm 3D Guidance Law for Flexible Target Enclosing With Inherent Safety Learning Agile Swimming: An End-to-End Approach Without CPGs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1