{"title":"基于单通道肌电图的手指手势界面研究","authors":"Hee-Yeong Yang;Young-Shin Han;Choon-Sung Nam","doi":"10.1109/ACCESS.2025.3527684","DOIUrl":null,"url":null,"abstract":"Electromyography (EMG) is used to recognize user finger gestures for applications in real-time interfaces. Finger movements are classified by preprocessing to extract the features from the collected EMG data, which are then used for machine learning. The data were extracted using the overlapped segmentation method to ensure sufficient training data. The preprocessing of EMG data uses standard formulae, such as integrated EMG (IEMG) and mean absolute value (MAV). Furthermore, preprocessing involves using original data, simple moving average (SMA), and Fast Fourier transform (FFT) for feature extraction. Subsequently, these preprocessed data sets are used to train machine learning models, facilitating a comparative analysis. Four machine learning models were used: eXtreme Gradient Boost, Random Forest, k-Nearest Neighbors, and Logistic Regression. The experimental results revealed the best accuracy from preprocessing using a simple moving average followed by a Fourier transform, but classification was not possible using all nine finger movements. On the other hand, it showed more than 90% accuracy because the model learned by reducing it to a specific finger gesture. Rest movements, index finger taps, and force-taps movements achieved the highest accuracy, approximately 95%.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"9606-9614"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10835803","citationCount":"0","resultStr":"{\"title\":\"Study on Finger Gesture Interface Using One-Channel EMG\",\"authors\":\"Hee-Yeong Yang;Young-Shin Han;Choon-Sung Nam\",\"doi\":\"10.1109/ACCESS.2025.3527684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromyography (EMG) is used to recognize user finger gestures for applications in real-time interfaces. Finger movements are classified by preprocessing to extract the features from the collected EMG data, which are then used for machine learning. The data were extracted using the overlapped segmentation method to ensure sufficient training data. The preprocessing of EMG data uses standard formulae, such as integrated EMG (IEMG) and mean absolute value (MAV). Furthermore, preprocessing involves using original data, simple moving average (SMA), and Fast Fourier transform (FFT) for feature extraction. Subsequently, these preprocessed data sets are used to train machine learning models, facilitating a comparative analysis. Four machine learning models were used: eXtreme Gradient Boost, Random Forest, k-Nearest Neighbors, and Logistic Regression. The experimental results revealed the best accuracy from preprocessing using a simple moving average followed by a Fourier transform, but classification was not possible using all nine finger movements. On the other hand, it showed more than 90% accuracy because the model learned by reducing it to a specific finger gesture. Rest movements, index finger taps, and force-taps movements achieved the highest accuracy, approximately 95%.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"9606-9614\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10835803\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10835803/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10835803/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Study on Finger Gesture Interface Using One-Channel EMG
Electromyography (EMG) is used to recognize user finger gestures for applications in real-time interfaces. Finger movements are classified by preprocessing to extract the features from the collected EMG data, which are then used for machine learning. The data were extracted using the overlapped segmentation method to ensure sufficient training data. The preprocessing of EMG data uses standard formulae, such as integrated EMG (IEMG) and mean absolute value (MAV). Furthermore, preprocessing involves using original data, simple moving average (SMA), and Fast Fourier transform (FFT) for feature extraction. Subsequently, these preprocessed data sets are used to train machine learning models, facilitating a comparative analysis. Four machine learning models were used: eXtreme Gradient Boost, Random Forest, k-Nearest Neighbors, and Logistic Regression. The experimental results revealed the best accuracy from preprocessing using a simple moving average followed by a Fourier transform, but classification was not possible using all nine finger movements. On the other hand, it showed more than 90% accuracy because the model learned by reducing it to a specific finger gesture. Rest movements, index finger taps, and force-taps movements achieved the highest accuracy, approximately 95%.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.