控制方向未知且输入饱和的立管系统自适应量化容错控制

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Systems Man Cybernetics-Systems Pub Date : 2024-11-25 DOI:10.1109/TSMC.2024.3487257
Xiaowei Wang;Baoshan Zhang;Shouyan Chen;Limin Wang;Zhijia Zhao;Zhijie Liu;Keum-Shik Hong
{"title":"控制方向未知且输入饱和的立管系统自适应量化容错控制","authors":"Xiaowei Wang;Baoshan Zhang;Shouyan Chen;Limin Wang;Zhijia Zhao;Zhijie Liu;Keum-Shik Hong","doi":"10.1109/TSMC.2024.3487257","DOIUrl":null,"url":null,"abstract":"With the burgeoning growth of the maritime economy, marine risers have emerged as reliable and convenient conduits for the transport of oil and natural gas. However, these risers are vulnerable to vibrational disturbances, which can adversely impact system performance and induce fatigue damage. Therefore, effective vibration control strategies are required to address this issue. This study introduces an innovative adaptive quantized fault-tolerant control strategy designed to attenuate vibrations in a three-dimensional (3-D) riser-vessel system against the effects of actuator faults, unknown control direction, and external disturbances. Different from previous findings, the suggested controller can directly counteract the nonlinear component stemming from actuator faults and handle the nonlinear decomposition inherent to the quantizer, without the necessity for upper-limit estimation. Furthermore, to tackle the input saturation, control laws are formulated using the hyperbolic tangent operator. Finally, the proposed controller’s effectiveness and robustness are validated through thorough Lyapunov analysis and numerical simulations, affirming the system’s uniformly bounded stability.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 2","pages":"886-897"},"PeriodicalIF":8.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Quantized Fault-Tolerant Control for a Riser-Vessel System With Unknown Control Direction and Input Saturation\",\"authors\":\"Xiaowei Wang;Baoshan Zhang;Shouyan Chen;Limin Wang;Zhijia Zhao;Zhijie Liu;Keum-Shik Hong\",\"doi\":\"10.1109/TSMC.2024.3487257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the burgeoning growth of the maritime economy, marine risers have emerged as reliable and convenient conduits for the transport of oil and natural gas. However, these risers are vulnerable to vibrational disturbances, which can adversely impact system performance and induce fatigue damage. Therefore, effective vibration control strategies are required to address this issue. This study introduces an innovative adaptive quantized fault-tolerant control strategy designed to attenuate vibrations in a three-dimensional (3-D) riser-vessel system against the effects of actuator faults, unknown control direction, and external disturbances. Different from previous findings, the suggested controller can directly counteract the nonlinear component stemming from actuator faults and handle the nonlinear decomposition inherent to the quantizer, without the necessity for upper-limit estimation. Furthermore, to tackle the input saturation, control laws are formulated using the hyperbolic tangent operator. Finally, the proposed controller’s effectiveness and robustness are validated through thorough Lyapunov analysis and numerical simulations, affirming the system’s uniformly bounded stability.\",\"PeriodicalId\":48915,\"journal\":{\"name\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"volume\":\"55 2\",\"pages\":\"886-897\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10766855/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10766855/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着海洋经济的蓬勃发展,海洋立管作为可靠、便捷的石油、天然气输送管道应运而生。然而,这些立管容易受到振动干扰,这可能会对系统性能产生不利影响,并导致疲劳损伤。因此,需要有效的振动控制策略来解决这一问题。本研究介绍了一种创新的自适应量化容错控制策略,旨在衰减三维立管系统的振动,以抵抗执行器故障、未知控制方向和外部干扰的影响。与以往的研究结果不同,该控制器可以直接抵消由执行器故障引起的非线性分量,并处理量化器固有的非线性分解,而无需进行上限估计。此外,为了解决输入饱和问题,使用双曲切线算子制定了控制律。最后,通过李雅普诺夫分析和数值仿真验证了所提控制器的有效性和鲁棒性,确认了系统的一致有界稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Quantized Fault-Tolerant Control for a Riser-Vessel System With Unknown Control Direction and Input Saturation
With the burgeoning growth of the maritime economy, marine risers have emerged as reliable and convenient conduits for the transport of oil and natural gas. However, these risers are vulnerable to vibrational disturbances, which can adversely impact system performance and induce fatigue damage. Therefore, effective vibration control strategies are required to address this issue. This study introduces an innovative adaptive quantized fault-tolerant control strategy designed to attenuate vibrations in a three-dimensional (3-D) riser-vessel system against the effects of actuator faults, unknown control direction, and external disturbances. Different from previous findings, the suggested controller can directly counteract the nonlinear component stemming from actuator faults and handle the nonlinear decomposition inherent to the quantizer, without the necessity for upper-limit estimation. Furthermore, to tackle the input saturation, control laws are formulated using the hyperbolic tangent operator. Finally, the proposed controller’s effectiveness and robustness are validated through thorough Lyapunov analysis and numerical simulations, affirming the system’s uniformly bounded stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
期刊最新文献
Table of Contents Table of Contents IEEE Transactions on Systems, Man, and Cybernetics: Systems Information for Authors IEEE Transactions on Systems, Man, and Cybernetics: Systems Information for Authors IEEE Systems, Man, and Cybernetics Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1