Jinjiang Zhang;Qiang Lin;Lu Wang;Orefo Victor Arinze;Zihan Hu;Yantai Huang
{"title":"基于A3C-FER的住宅能源管理方法","authors":"Jinjiang Zhang;Qiang Lin;Lu Wang;Orefo Victor Arinze;Zihan Hu;Yantai Huang","doi":"10.1109/ACCESS.2025.3529872","DOIUrl":null,"url":null,"abstract":"Deep reinforcement learning has been widely applied in the field of residential energy management, showcasing considerable promise in enhancing energy efficiency and reducing energy consumption. However, it is observed that some methodologies still suffer from inadequate data exploitation, which results in suboptimal policy performance. In this study, focusing on the residential energy management system, an innovative reinforcement learning method is proposed. This novel method fuses the asynchronous advantage actor-critic architecture with a familiarity-based experience replay mechanism, with the ambition of markedly improving learning efficiency and control performance. Numerical comparisons were made to justify the effectiveness of the method. Experimental results across diverse cases confirm that the proposed algorithm can effectively achieve optimal energy scheduling for residential sectors. Furthermore, the proposed methodology has demonstrated a notable reduction in grid interaction expenses, achieving a decrease of 27.03% and 16.38% relative to the other two scenarios. In comparison with the Proximal Policy Optimization (PPO) and Deep Q-Network (DQN) algorithms, the novel approach not only improves the average reward value post-convergence by 38.48% and 47.17%, respectively, but also significantly reduces the training duration by 81.19% within a multi-threaded computational environment.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"12203-12214"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843226","citationCount":"0","resultStr":"{\"title\":\"Residential Energy Management Method Based on the Proposed A3C-FER\",\"authors\":\"Jinjiang Zhang;Qiang Lin;Lu Wang;Orefo Victor Arinze;Zihan Hu;Yantai Huang\",\"doi\":\"10.1109/ACCESS.2025.3529872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep reinforcement learning has been widely applied in the field of residential energy management, showcasing considerable promise in enhancing energy efficiency and reducing energy consumption. However, it is observed that some methodologies still suffer from inadequate data exploitation, which results in suboptimal policy performance. In this study, focusing on the residential energy management system, an innovative reinforcement learning method is proposed. This novel method fuses the asynchronous advantage actor-critic architecture with a familiarity-based experience replay mechanism, with the ambition of markedly improving learning efficiency and control performance. Numerical comparisons were made to justify the effectiveness of the method. Experimental results across diverse cases confirm that the proposed algorithm can effectively achieve optimal energy scheduling for residential sectors. Furthermore, the proposed methodology has demonstrated a notable reduction in grid interaction expenses, achieving a decrease of 27.03% and 16.38% relative to the other two scenarios. In comparison with the Proximal Policy Optimization (PPO) and Deep Q-Network (DQN) algorithms, the novel approach not only improves the average reward value post-convergence by 38.48% and 47.17%, respectively, but also significantly reduces the training duration by 81.19% within a multi-threaded computational environment.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"12203-12214\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843226\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10843226/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10843226/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Residential Energy Management Method Based on the Proposed A3C-FER
Deep reinforcement learning has been widely applied in the field of residential energy management, showcasing considerable promise in enhancing energy efficiency and reducing energy consumption. However, it is observed that some methodologies still suffer from inadequate data exploitation, which results in suboptimal policy performance. In this study, focusing on the residential energy management system, an innovative reinforcement learning method is proposed. This novel method fuses the asynchronous advantage actor-critic architecture with a familiarity-based experience replay mechanism, with the ambition of markedly improving learning efficiency and control performance. Numerical comparisons were made to justify the effectiveness of the method. Experimental results across diverse cases confirm that the proposed algorithm can effectively achieve optimal energy scheduling for residential sectors. Furthermore, the proposed methodology has demonstrated a notable reduction in grid interaction expenses, achieving a decrease of 27.03% and 16.38% relative to the other two scenarios. In comparison with the Proximal Policy Optimization (PPO) and Deep Q-Network (DQN) algorithms, the novel approach not only improves the average reward value post-convergence by 38.48% and 47.17%, respectively, but also significantly reduces the training duration by 81.19% within a multi-threaded computational environment.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.