脊柱侧凸自然图像的对称感知与有序回归检测

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2025-01-16 DOI:10.1007/s10489-024-05849-5
Xiaojia Zhu, Rui Chen, Xiaoqi Guo, Zhiwen Shao, Yuhu Dai, Ming Zhang, Chuandong Lang
{"title":"脊柱侧凸自然图像的对称感知与有序回归检测","authors":"Xiaojia Zhu,&nbsp;Rui Chen,&nbsp;Xiaoqi Guo,&nbsp;Zhiwen Shao,&nbsp;Yuhu Dai,&nbsp;Ming Zhang,&nbsp;Chuandong Lang","doi":"10.1007/s10489-024-05849-5","DOIUrl":null,"url":null,"abstract":"<div><p>Scoliosis is one of the most common diseases in adolescents. Traditional screening methods for the scoliosis usually use radiographic examination, which requires certified experts with medical instruments and brings the radiation risk. Considering such requirement and inconvenience, we propose to use natural images of the human back for wide-range scoliosis screening, which is a challenging problem. In this paper, we notice that the human back has a certain degree of symmetry, and asymmetrical human backs are usually caused by spinal lesions. Besides, scoliosis severity levels have ordinal relationships. Taking inspiration from this, we propose a dual-path scoliosis detection network with two main modules: symmetric feature matching module (SFMM) and ordinal regression head (ORH). Specifically, we first adopt a backbone to extract features from both the input image and its horizontally flipped image. Then, we feed the two extracted features into the SFMM to capture symmetric relationships. Finally, we use the ORH to transform the ordinal regression problem into a series of binary classification sub-problems. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods as well as human performance, which provides a promising and economic solution to wide-range scoliosis screening. In particular, our method achieves accuracies of 95.11% and 81.46% in estimation of general severity level and fine-grained severity level of the scoliosis, respectively.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric perception and ordinal regression for detecting scoliosis natural image\",\"authors\":\"Xiaojia Zhu,&nbsp;Rui Chen,&nbsp;Xiaoqi Guo,&nbsp;Zhiwen Shao,&nbsp;Yuhu Dai,&nbsp;Ming Zhang,&nbsp;Chuandong Lang\",\"doi\":\"10.1007/s10489-024-05849-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Scoliosis is one of the most common diseases in adolescents. Traditional screening methods for the scoliosis usually use radiographic examination, which requires certified experts with medical instruments and brings the radiation risk. Considering such requirement and inconvenience, we propose to use natural images of the human back for wide-range scoliosis screening, which is a challenging problem. In this paper, we notice that the human back has a certain degree of symmetry, and asymmetrical human backs are usually caused by spinal lesions. Besides, scoliosis severity levels have ordinal relationships. Taking inspiration from this, we propose a dual-path scoliosis detection network with two main modules: symmetric feature matching module (SFMM) and ordinal regression head (ORH). Specifically, we first adopt a backbone to extract features from both the input image and its horizontally flipped image. Then, we feed the two extracted features into the SFMM to capture symmetric relationships. Finally, we use the ORH to transform the ordinal regression problem into a series of binary classification sub-problems. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods as well as human performance, which provides a promising and economic solution to wide-range scoliosis screening. In particular, our method achieves accuracies of 95.11% and 81.46% in estimation of general severity level and fine-grained severity level of the scoliosis, respectively.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-05849-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05849-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

脊柱侧凸是青少年最常见的疾病之一。传统的脊柱侧凸筛查方法通常采用影像学检查,这需要有资质的专家和医疗器械,并带来辐射风险。考虑到这种要求和不便,我们建议使用人体背部的自然图像进行大范围的脊柱侧凸筛查,这是一个具有挑战性的问题。在本文中,我们注意到人类的背部具有一定的对称性,而不对称的人类背部通常是由脊柱病变引起的。此外,脊柱侧凸的严重程度具有顺序关系。受此启发,我们提出了一种双路径脊柱侧凸检测网络,该网络包含两个主要模块:对称特征匹配模块(SFMM)和有序回归头(ORH)。具体来说,我们首先采用主干提取输入图像及其水平翻转图像的特征。然后,我们将两个提取的特征输入到SFMM中以捕获对称关系。最后,我们利用ORH将有序回归问题转化为一系列二值分类子问题。大量的实验表明,我们的方法优于最先进的方法以及人类的表现,这为大范围脊柱侧凸筛查提供了一个有前途和经济的解决方案。特别是,我们的方法在估计脊柱侧凸的一般严重程度和细粒度严重程度方面分别达到95.11%和81.46%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Symmetric perception and ordinal regression for detecting scoliosis natural image

Scoliosis is one of the most common diseases in adolescents. Traditional screening methods for the scoliosis usually use radiographic examination, which requires certified experts with medical instruments and brings the radiation risk. Considering such requirement and inconvenience, we propose to use natural images of the human back for wide-range scoliosis screening, which is a challenging problem. In this paper, we notice that the human back has a certain degree of symmetry, and asymmetrical human backs are usually caused by spinal lesions. Besides, scoliosis severity levels have ordinal relationships. Taking inspiration from this, we propose a dual-path scoliosis detection network with two main modules: symmetric feature matching module (SFMM) and ordinal regression head (ORH). Specifically, we first adopt a backbone to extract features from both the input image and its horizontally flipped image. Then, we feed the two extracted features into the SFMM to capture symmetric relationships. Finally, we use the ORH to transform the ordinal regression problem into a series of binary classification sub-problems. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods as well as human performance, which provides a promising and economic solution to wide-range scoliosis screening. In particular, our method achieves accuracies of 95.11% and 81.46% in estimation of general severity level and fine-grained severity level of the scoliosis, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
Insulator defect detection from aerial images in adverse weather conditions A review of the emotion recognition model of robots Knowledge guided relation enhancement for human-object interaction detection A modified dueling DQN algorithm for robot path planning incorporating priority experience replay and artificial potential fields A non-parameter oversampling approach for imbalanced data classification based on hybrid natural neighbors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1