P. A. Shcheglov, D. A. Samsonov, A. B. Pavlenkov, T. L. Kulova, A. Yu. Rychagov, A. M. Skundin, E. Yu. Postnova
{"title":"备用化学电源用铅基涂料负极的物理化学性质及功能研究","authors":"P. A. Shcheglov, D. A. Samsonov, A. B. Pavlenkov, T. L. Kulova, A. Yu. Rychagov, A. M. Skundin, E. Yu. Postnova","doi":"10.1134/S0036024424702704","DOIUrl":null,"url":null,"abstract":"<p>Atomic force microscopy, scanning electron microscopy, X-ray diffraction phase analysis, voltammetry, and chronopotentiometry are used to study the physicochemical properties of lead coating on steel substrates obtained galvanically. The effect the oxidized surface layer and through pores in the lead coating have on the coating’s function as an anode of chemical power sources is analyzed. It is shown that at positive temperatures, the anodic oxidation of the steel substrate can contribute to the functioning of the anode during a discharge. The high discharge characteristics of lead-coated anodes with no barrier layers on steel substrates at temperatures of −50 to +50°С are confirmed by tests of pilot batches of Pb/HClO<sub>4</sub>/PbO<sub>2</sub> reserve power sources. The potential of using tin–lead alloy POS 63 on copper substrates to manufacture anodes for chemical power sources is demonstrated.</p>","PeriodicalId":767,"journal":{"name":"Russian Journal of Physical Chemistry A","volume":"98 13","pages":"3227 - 3237"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physicochemical Properties and Functioning of Negative Electrodes with Lead-Based Coatings as Parts of Reserve Chemical Power Sources\",\"authors\":\"P. A. Shcheglov, D. A. Samsonov, A. B. Pavlenkov, T. L. Kulova, A. Yu. Rychagov, A. M. Skundin, E. Yu. Postnova\",\"doi\":\"10.1134/S0036024424702704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atomic force microscopy, scanning electron microscopy, X-ray diffraction phase analysis, voltammetry, and chronopotentiometry are used to study the physicochemical properties of lead coating on steel substrates obtained galvanically. The effect the oxidized surface layer and through pores in the lead coating have on the coating’s function as an anode of chemical power sources is analyzed. It is shown that at positive temperatures, the anodic oxidation of the steel substrate can contribute to the functioning of the anode during a discharge. The high discharge characteristics of lead-coated anodes with no barrier layers on steel substrates at temperatures of −50 to +50°С are confirmed by tests of pilot batches of Pb/HClO<sub>4</sub>/PbO<sub>2</sub> reserve power sources. The potential of using tin–lead alloy POS 63 on copper substrates to manufacture anodes for chemical power sources is demonstrated.</p>\",\"PeriodicalId\":767,\"journal\":{\"name\":\"Russian Journal of Physical Chemistry A\",\"volume\":\"98 13\",\"pages\":\"3227 - 3237\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Physical Chemistry A\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0036024424702704\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry A","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0036024424702704","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Physicochemical Properties and Functioning of Negative Electrodes with Lead-Based Coatings as Parts of Reserve Chemical Power Sources
Atomic force microscopy, scanning electron microscopy, X-ray diffraction phase analysis, voltammetry, and chronopotentiometry are used to study the physicochemical properties of lead coating on steel substrates obtained galvanically. The effect the oxidized surface layer and through pores in the lead coating have on the coating’s function as an anode of chemical power sources is analyzed. It is shown that at positive temperatures, the anodic oxidation of the steel substrate can contribute to the functioning of the anode during a discharge. The high discharge characteristics of lead-coated anodes with no barrier layers on steel substrates at temperatures of −50 to +50°С are confirmed by tests of pilot batches of Pb/HClO4/PbO2 reserve power sources. The potential of using tin–lead alloy POS 63 on copper substrates to manufacture anodes for chemical power sources is demonstrated.
期刊介绍:
Russian Journal of Physical Chemistry A. Focus on Chemistry (Zhurnal Fizicheskoi Khimii), founded in 1930, offers a comprehensive review of theoretical and experimental research from the Russian Academy of Sciences, leading research and academic centers from Russia and from all over the world.
Articles are devoted to chemical thermodynamics and thermochemistry, biophysical chemistry, photochemistry and magnetochemistry, materials structure, quantum chemistry, physical chemistry of nanomaterials and solutions, surface phenomena and adsorption, and methods and techniques of physicochemical studies.