Junchao Ren, Qiao Zhang, Bingbing Kang, Yuxi Zhong, Min He, Yanliang Ge, Hongbo Bi
{"title":"用于伪装目标检测的语义空间引导上下文传播网络","authors":"Junchao Ren, Qiao Zhang, Bingbing Kang, Yuxi Zhong, Min He, Yanliang Ge, Hongbo Bi","doi":"10.1007/s10489-025-06264-0","DOIUrl":null,"url":null,"abstract":"<div><p>Camouflaged object detection (COD) aims to detect objects that blend in with their surroundings and is a challenging task in computer vision. High-level semantic information and low-level spatial information play important roles in localizing camouflaged objects and reinforcing spatial cues. However, current COD methods directly connect high-level features with low-level features, ignoring the importance of the respective features. In this paper, we design a <i>S</i>emantic-spatial guided <i>C</i>ontext <i>P</i>ropagation <i>N</i>etwork (<i>SCPNet</i>) to efficiently mine semantic and spatial features while enhancing their feature representations. Firstly, we design a twin positioning module (TPM) to explore semantic cues to accurately locate camouflaged objects. Afterward, we introduce a spatial awareness module (SAM) to mine spatial cues in shallow features deeply. Finally, we develop a context propagation module (CPM) to assign semantic and spatial cues to multi-level features and enhance their feature representations. Experimental results show that our SCPNet outperforms state-of-the-art methods on three challenging datasets. Codes will be made available at https://github.com/RJC0608/SCPNet.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic-spatial guided context propagation network for camouflaged object detection\",\"authors\":\"Junchao Ren, Qiao Zhang, Bingbing Kang, Yuxi Zhong, Min He, Yanliang Ge, Hongbo Bi\",\"doi\":\"10.1007/s10489-025-06264-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Camouflaged object detection (COD) aims to detect objects that blend in with their surroundings and is a challenging task in computer vision. High-level semantic information and low-level spatial information play important roles in localizing camouflaged objects and reinforcing spatial cues. However, current COD methods directly connect high-level features with low-level features, ignoring the importance of the respective features. In this paper, we design a <i>S</i>emantic-spatial guided <i>C</i>ontext <i>P</i>ropagation <i>N</i>etwork (<i>SCPNet</i>) to efficiently mine semantic and spatial features while enhancing their feature representations. Firstly, we design a twin positioning module (TPM) to explore semantic cues to accurately locate camouflaged objects. Afterward, we introduce a spatial awareness module (SAM) to mine spatial cues in shallow features deeply. Finally, we develop a context propagation module (CPM) to assign semantic and spatial cues to multi-level features and enhance their feature representations. Experimental results show that our SCPNet outperforms state-of-the-art methods on three challenging datasets. Codes will be made available at https://github.com/RJC0608/SCPNet.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06264-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06264-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Semantic-spatial guided context propagation network for camouflaged object detection
Camouflaged object detection (COD) aims to detect objects that blend in with their surroundings and is a challenging task in computer vision. High-level semantic information and low-level spatial information play important roles in localizing camouflaged objects and reinforcing spatial cues. However, current COD methods directly connect high-level features with low-level features, ignoring the importance of the respective features. In this paper, we design a Semantic-spatial guided Context Propagation Network (SCPNet) to efficiently mine semantic and spatial features while enhancing their feature representations. Firstly, we design a twin positioning module (TPM) to explore semantic cues to accurately locate camouflaged objects. Afterward, we introduce a spatial awareness module (SAM) to mine spatial cues in shallow features deeply. Finally, we develop a context propagation module (CPM) to assign semantic and spatial cues to multi-level features and enhance their feature representations. Experimental results show that our SCPNet outperforms state-of-the-art methods on three challenging datasets. Codes will be made available at https://github.com/RJC0608/SCPNet.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.