Håkan Pleijel, Jenny Klingberg, Henrik Sjöman, Göran Wallin
{"title":"叶片年龄对常绿植物汞积累的影响","authors":"Håkan Pleijel, Jenny Klingberg, Henrik Sjöman, Göran Wallin","doi":"10.1007/s11270-025-07752-2","DOIUrl":null,"url":null,"abstract":"<div><p>We investigated the mercury (Hg) concentration of the full range of needle age classes (NACs) in two conifers, nine NACs in <i>Picea abies</i> and fourteen in <i>Abies pinsapo</i> var. <i>marocana</i>, as well as three leaf age classes (LACs) in two broadleaved evergreen species, <i>Trochodendron aralioides</i> and <i>Rhododendron catawbiense</i>. Additionally, the Hg concentration of the wooden branch segments to which the NACs were attached in the two conifers was studied. <i>Picea abies</i> showed a continued Hg accumulation over all NACs, but with an age-dependent decline in the accumulation rate. In <i>Abies pinsapo</i> var. <i>marocana</i>, maximum needle concentrations of Hg were reached after eight years. The concentration remained constant for NACs 9–14, indicating that needles had become saturated with Hg. The Hg concentrations of the branch segments were much lower than those of the needles in the older NACs. Over the three LACs of <i>Trochodendron aralioides</i> and <i>Rhododendron catawbiense</i> there was a steady increase in concentration with a weak indication of a declining Hg uptake rate in older leaves. The average needle/leaf lifetime Hg uptake rate per year was only half that of broadleaved species across all NACs and LACs. We conclude that in conifers maintaining a larger number of NACs there is a decline of the Hg accumulation rate in older NACs. In future biogeochemical research (empirical and modelling) and biomonitoring studies, the age of sampled leaves needs to be considered to account for the age dependence of leaf Hg concentration and accumulation rate.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11270-025-07752-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Leaf Age Affects Mercury Accumulation in Evergreen Plants\",\"authors\":\"Håkan Pleijel, Jenny Klingberg, Henrik Sjöman, Göran Wallin\",\"doi\":\"10.1007/s11270-025-07752-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigated the mercury (Hg) concentration of the full range of needle age classes (NACs) in two conifers, nine NACs in <i>Picea abies</i> and fourteen in <i>Abies pinsapo</i> var. <i>marocana</i>, as well as three leaf age classes (LACs) in two broadleaved evergreen species, <i>Trochodendron aralioides</i> and <i>Rhododendron catawbiense</i>. Additionally, the Hg concentration of the wooden branch segments to which the NACs were attached in the two conifers was studied. <i>Picea abies</i> showed a continued Hg accumulation over all NACs, but with an age-dependent decline in the accumulation rate. In <i>Abies pinsapo</i> var. <i>marocana</i>, maximum needle concentrations of Hg were reached after eight years. The concentration remained constant for NACs 9–14, indicating that needles had become saturated with Hg. The Hg concentrations of the branch segments were much lower than those of the needles in the older NACs. Over the three LACs of <i>Trochodendron aralioides</i> and <i>Rhododendron catawbiense</i> there was a steady increase in concentration with a weak indication of a declining Hg uptake rate in older leaves. The average needle/leaf lifetime Hg uptake rate per year was only half that of broadleaved species across all NACs and LACs. We conclude that in conifers maintaining a larger number of NACs there is a decline of the Hg accumulation rate in older NACs. In future biogeochemical research (empirical and modelling) and biomonitoring studies, the age of sampled leaves needs to be considered to account for the age dependence of leaf Hg concentration and accumulation rate.</p></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":\"236 2\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11270-025-07752-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-025-07752-2\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07752-2","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Leaf Age Affects Mercury Accumulation in Evergreen Plants
We investigated the mercury (Hg) concentration of the full range of needle age classes (NACs) in two conifers, nine NACs in Picea abies and fourteen in Abies pinsapo var. marocana, as well as three leaf age classes (LACs) in two broadleaved evergreen species, Trochodendron aralioides and Rhododendron catawbiense. Additionally, the Hg concentration of the wooden branch segments to which the NACs were attached in the two conifers was studied. Picea abies showed a continued Hg accumulation over all NACs, but with an age-dependent decline in the accumulation rate. In Abies pinsapo var. marocana, maximum needle concentrations of Hg were reached after eight years. The concentration remained constant for NACs 9–14, indicating that needles had become saturated with Hg. The Hg concentrations of the branch segments were much lower than those of the needles in the older NACs. Over the three LACs of Trochodendron aralioides and Rhododendron catawbiense there was a steady increase in concentration with a weak indication of a declining Hg uptake rate in older leaves. The average needle/leaf lifetime Hg uptake rate per year was only half that of broadleaved species across all NACs and LACs. We conclude that in conifers maintaining a larger number of NACs there is a decline of the Hg accumulation rate in older NACs. In future biogeochemical research (empirical and modelling) and biomonitoring studies, the age of sampled leaves needs to be considered to account for the age dependence of leaf Hg concentration and accumulation rate.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.