{"title":"平行生物反应器策略快速确定生物生产的生长耦合关系:甲羟戊酸案例研究","authors":"Alec Banner, Joseph Webb, Nigel Scrutton","doi":"10.1186/s13068-024-02599-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The climate crisis and depleting fossil fuel reserves have led to a drive for ‘green’ alternatives to the way we manufacture chemicals, and the formation of a bioeconomy that reduces our reliance on petrochemical-based feedstocks. Advances in Synthetic biology have provided the opportunity to engineer micro-organisms to produce compounds from renewable feedstocks, which could play a role in replacing traditional, petrochemical based, manufacturing routes. However, there are few examples of bio-manufactured products achieving commercialisation. This may be partially due to a disparity between academic and industrial focus, and a greater emphasis needs to be placed on economic feasibility at an earlier stage. Terpenoids are a class of compounds with diverse use across fuel, materials and pharmaceutical industries and can be manufactured biologically from the key intermediate mevalonate.</p><h3>Results</h3><p>Here, we report on a method of utilising parallel bioreactors to rapidly map the growth-coupling relationship between the specific product formation rate, specific substrate utilisation rate and specific growth rate. Using mevalonate as an example product, a maximum product yield coefficient of 0.18 g<sub>p</sub>/g<sub>s</sub> was achieved at a growth rate (<span>\\(\\mu\\)</span>) of 0.34 h<sup>−1</sup>. However, this process also led to the formation of the toxic byproduct acetate, which can slow growth and cause problems during downstream processing. By using gene editing to knock out the <i>ackA-pta</i> operon and <i>poxB</i> from <i>E. coli</i> BW25113, we were able to achieve the same optimum production rate, without the formation of acetate.</p><h3>Conclusions</h3><p>We demonstrated the power of using parallel bioreactors to assess productivity and the growth-coupling relationship between growth rate and product yield coefficient of mevalonate production. Using genetic engineering, our resultant strain demonstrated rapid mevalonate formation without the unwanted byproduct acetate. Mevalonate production is quantified and reported in industrially relevant units, including key parameters like conversion efficiency that are often omitted in early-stage publications reporting only titre in g/L.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02599-x","citationCount":"0","resultStr":"{\"title\":\"A parallel bioreactor strategy to rapidly determine growth-coupling relationships for bioproduction: a mevalonate case study\",\"authors\":\"Alec Banner, Joseph Webb, Nigel Scrutton\",\"doi\":\"10.1186/s13068-024-02599-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The climate crisis and depleting fossil fuel reserves have led to a drive for ‘green’ alternatives to the way we manufacture chemicals, and the formation of a bioeconomy that reduces our reliance on petrochemical-based feedstocks. Advances in Synthetic biology have provided the opportunity to engineer micro-organisms to produce compounds from renewable feedstocks, which could play a role in replacing traditional, petrochemical based, manufacturing routes. However, there are few examples of bio-manufactured products achieving commercialisation. This may be partially due to a disparity between academic and industrial focus, and a greater emphasis needs to be placed on economic feasibility at an earlier stage. Terpenoids are a class of compounds with diverse use across fuel, materials and pharmaceutical industries and can be manufactured biologically from the key intermediate mevalonate.</p><h3>Results</h3><p>Here, we report on a method of utilising parallel bioreactors to rapidly map the growth-coupling relationship between the specific product formation rate, specific substrate utilisation rate and specific growth rate. Using mevalonate as an example product, a maximum product yield coefficient of 0.18 g<sub>p</sub>/g<sub>s</sub> was achieved at a growth rate (<span>\\\\(\\\\mu\\\\)</span>) of 0.34 h<sup>−1</sup>. However, this process also led to the formation of the toxic byproduct acetate, which can slow growth and cause problems during downstream processing. By using gene editing to knock out the <i>ackA-pta</i> operon and <i>poxB</i> from <i>E. coli</i> BW25113, we were able to achieve the same optimum production rate, without the formation of acetate.</p><h3>Conclusions</h3><p>We demonstrated the power of using parallel bioreactors to assess productivity and the growth-coupling relationship between growth rate and product yield coefficient of mevalonate production. Using genetic engineering, our resultant strain demonstrated rapid mevalonate formation without the unwanted byproduct acetate. Mevalonate production is quantified and reported in industrially relevant units, including key parameters like conversion efficiency that are often omitted in early-stage publications reporting only titre in g/L.</p></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02599-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-024-02599-x\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02599-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A parallel bioreactor strategy to rapidly determine growth-coupling relationships for bioproduction: a mevalonate case study
Background
The climate crisis and depleting fossil fuel reserves have led to a drive for ‘green’ alternatives to the way we manufacture chemicals, and the formation of a bioeconomy that reduces our reliance on petrochemical-based feedstocks. Advances in Synthetic biology have provided the opportunity to engineer micro-organisms to produce compounds from renewable feedstocks, which could play a role in replacing traditional, petrochemical based, manufacturing routes. However, there are few examples of bio-manufactured products achieving commercialisation. This may be partially due to a disparity between academic and industrial focus, and a greater emphasis needs to be placed on economic feasibility at an earlier stage. Terpenoids are a class of compounds with diverse use across fuel, materials and pharmaceutical industries and can be manufactured biologically from the key intermediate mevalonate.
Results
Here, we report on a method of utilising parallel bioreactors to rapidly map the growth-coupling relationship between the specific product formation rate, specific substrate utilisation rate and specific growth rate. Using mevalonate as an example product, a maximum product yield coefficient of 0.18 gp/gs was achieved at a growth rate (\(\mu\)) of 0.34 h−1. However, this process also led to the formation of the toxic byproduct acetate, which can slow growth and cause problems during downstream processing. By using gene editing to knock out the ackA-pta operon and poxB from E. coli BW25113, we were able to achieve the same optimum production rate, without the formation of acetate.
Conclusions
We demonstrated the power of using parallel bioreactors to assess productivity and the growth-coupling relationship between growth rate and product yield coefficient of mevalonate production. Using genetic engineering, our resultant strain demonstrated rapid mevalonate formation without the unwanted byproduct acetate. Mevalonate production is quantified and reported in industrially relevant units, including key parameters like conversion efficiency that are often omitted in early-stage publications reporting only titre in g/L.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis